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Summary. Stationarity of the energy expectation value as required in the varia- 
tional approach can in most cases of practical interest be formulated with 
reference to a unitary 'variational group' and its associated Lie algebra. In terms 
of  a basis of this Lie algebra, Brillouin (hypervirial) conditions and a Hessean 
are defined. The formulation of stationary perturbation theory (as well as of 
multiple perturbation theory) in the Lie-algebraic framework is straightforward. 
If the operator IT, which describes the perturbation of the wave function, is 
expandable in the Lie algebra of the variational group, a Hel lmann-Feynman 
theorem holds (as a special case of Wigner's [2n + 1] rule) and the first order 
operator Y1 can be obtained from minimization of a Lie-algebraic Hylleraas 
functional. Under the same condition for two perturbations, Dalgarno's ex- 
change theorem holds. An analysis of the spectrum the Hessean leads to a 
generalization of the RPA method for any chosen variational group. Any 
variational group automatically generates a model excitation spectrum. Some- 
times one wants to formulate the variational approach in terms of two or more 
(independent and noncommuting) variational groups. An example is coupled- 
MC-SCF theory. One must specify the order in which operators of the two 
groups act, but otherwise there is not much change with respect to the case of a 
single group. Time-dependent stationary perturbation theory, based on Frenkel's 
stationarity principle, is possible on similar lines. Singularities related to an 
indefinite phase, which plague traditional time dependent perturbation theory are 
automatically avoided. In the framework of stationary perturbation theory the 
dipole length and dipole velocity formulas for a transition element are equiva- 
lent. For a time-dependent Hamiltonian there is no unique definition of the 
corresponding energy. There are various possibilities to define a 'pseudo-energy'. 
One of these definitions is consistent with a special form of a time-dependent 
Hel lmann-Feynman theorem. For  a perturbation periodic in time so-called 
Floquet states exist and stationary time-dependent perturbation theory starting 
from a stationary state of the unperturbed problem automatically leads to these. 
For  Floquet states a genuine stationarity condition can be derived, that is based 
on the concept of a generalized Hilbert space and that does not suffer from the 
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shortcomings of Frenkel's principle. The perturbation formalism for these is 
surprisingly close to that of the time-independent theory. For degenerate and 
near-degenerate states a quasidegenerate generalization of stationary perturba- 
tion theory is possible. 

Key words: Stationarity - Perturbation theory - Energy expectation value - Lie 
algebra - Variational approach 

I. Introduction 

Most methods for an approximate solution of the (time independent) 
Schr6dinger equation: 

H ~  ---E~ (1.1) 

are based on the variation principle, i.e. on requiring stationarity o f  the energy 
functional: 

-- I n  I ] 7">} = 0 (1.2) 

with respect to a family of variations of ~. If  Ec 1. (1.2) holds for all possible 
variations of ~, ~ is a solution of Eq. (1.1) and E is equal to an eigenvalue of 
H, otherwise E is an upper bound to the lowest eigenvalue Eo of H. 

One is often faced with the problem to find eigenvalues and eigenfunctions of 
a Hamiltonian that depends on some parameter 2: 

H(2) gt(2) = E(2) 7/(2) (1.3) 

One can then either use the variation principle for some selected values of 2 and 
interpolate, or alternatively try to find E(2) and ~(2) as power series in 2: 

7 t =  ~ 2k~gk; E =  ~ 2kEk (1.4a) 
k = 0  k = 0  

This is possible - within a radius of convergence for 2 - if H(2) is analytic in 2, 
e.g. a polynomial of degree one: 

H = Ho + 2H1 (1.4b) 

and if certain conditions on H are satisfied [1]. Sometimes the expansion of Eq. 
(1.4a) in 2 for H of the form of Eq. (lAb) is only asymptotic rather than 
convergent. The formalism used conventionally to find the coefficients of the 
power series expansions of 7 j and E is that of perturbation theory. In the 
derivation of perturbation theory, as found in most textbooks, the starting 
assumption is made that the 'unperturbed problem', i.e. Eq. (1.3) for 2 ---0 can 
be solved exactly. In this case a few theorems can be derived, e.g. that E2n +1 is 
expressible in terms of the ~u k, k ~< n only (Wigner's [2n + l]-rule), especially 
that: 

E,- I _o (1.5) 

which is known as HeHmann-Feynman theorem, and that ~, can be obtained 
by minimizing the Hylleraas functional: 

E: <~F(}PI) =(}PI[Ho-Eo[}F1)+ 2Re(}P]HI--E,]}I'x> (1.6) 
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The traditional formalism of perturbation theory is not very helpful if the 
conditions under which it has been derived are not satisfied, e.g. if the unper- 
turbed problem cannot be solved exactly. To be on a safe ground in actual 
computations it would be preferable to use a perturbation formalism that has 
been derived from the variation principle, i.e. from the requirement that the 
expectation value of H(2) is stationary independently of 2 in a neighborhood of 
2 = 0, i.e. that: 

aE(,~) = 0; ,7(2) = <~(~) IH(~) [ ~(~)>/<~(~) [ ~(~)> (1.7) 

Attempts on these lines to derive a 'stationary perturbation theory' can be found 
in the literature, e.g. in Epstein's book [2]. Some theorems of 'exact' perturbation 
theory can be shown to hold in this framework. Noteworthy is Hurley's study [3] 
of the conditions under which a special Hel lmann-Feynman theorem holds for 
an approximate zeroth order function. 

The purpose of the present paper is a unified formulation of the variational 
approach (for both linear and nonlinear variations) and of stationary perturba- 
tion theory (time-independent and time-dependent, for single and multiple 
perturbations) in a Lie-algebraic framework. The basic idea is that in most cases 
of interest stationarity of the energy with respect to a family of variations can be 
formulated in terms of a variational group. In terms of this variational group 
automatically generalized Brillouin conditions (in the form of hypervirial rela- 
tions) and a Hessean are defined. A Lie-algebraic version of the Hylleraas 
functional appears naturally. Moreover, the variational group generates a model 
excitation spectrum of generalized RPA (random phase) type. Variational stabil- 
ity and symmetry breaking or similar features are easily discussed in this 
framework. 

Many well-known as well as a few less-known or unknown results can so be 
derived in a rather elegant and transparent way. The power of this formalism 
will become obvious in the second paper of this series, where it is applied to a 
study of correlation effects on properties [4] and also in a rederivation and a 
generalization of the IGLO method for magnetic properties [5] in a forthcoming 
paper [6] (see also [7]). 

There are quite a few precursors to this study. The thorough analysis of the 
variation principle by Epstein [2] has already been mentioned. Relevant in this 
context is the unitary perturbation theory of Primas [8], much of the literature 
on hypervirial theorems [9, 10], in particular on the relation of unitary perturba- 
tion theory to hypervirial theorems [ 11-13]. Closely related is the formulation of 
the quantum mechanical many-body problem in terms of a hierarchy of Lie 
groups by Fukutome [14]. Concerning perturbative corrections to expectation 
values various papers by Sadlej deserve interest [15]. Of course, the author's own 
experience with perturbation theory in Fock space [16] has been helpful. Lie 
algebras have also been used in time-dependent theory, mainly in studies of the 
exact solution of a model problem in which the Hamiltonian is a member of a 
given Lie algebra [ 17], but also in the context of stationarity conditions like those 
considered here [18]. The mathematical background on Lie algebras [19] and on 
differential manifolds [20] can be found in standard textbooks [19, 20]. 

This paper is organized as follows. In Sect. 2 the variational group is 
introduced and generalized Brillouin conditions are derived. The Hessean is 
defined and a Newton-Raphson approach towards a stationary wave function 
(or density matrix) is formulated. In Sect. 3 various examples of variational 
groups, e.g. that corresponding to a scale transformation, that for linear varia- 
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tions and that relevant for Hartree-Fock theory, are presented. The derivation of 
stationary perturbation theory is given in Sect. 4, the generalization to multiple 
perturbations in Sect. 5. The Hellmann-Feynman theorem and Dalgarno's ex- 
change theorem arise in a natural way. Essential is that the perturbation is 
described within the variational group. In Sect. 6 we discuss the eigenvalue 
spectrum of the Hessean and the removal of redundancies that would invalidate 
the solution of the linear systems of equations needed in the variational ap- 
proach and in stationary perturbation theory. The search for a metric in 
operator space immediately leads to a generalization of the Random-phase 
approximation and it is seen that any variational group automatically generates 
a model excitation and deexcitation spectrum. Special features of real and 
imaginary perturbations are discussed in Sect. 7. In Sect. 8 stationary perturba- 
tion theory is generalized to the practically interesting case that one cares for 
stationarity with respect to two (or more) independent and noncommuting groups 
(¢1 and N2, but not with respect to the embedding group N generated from (¢~ 
and ~2. This case is e.g. realized in CAS-SCF theory. Section 9 gives the 
generalization to time-dependent perturbations, where some singularities that 
plague the traditional Dirac approach are automatically avoided. The concept of 
the pseudo-energy and its relation to a time-dependent Hellmann-Feynman 
theorem is introduced and discussed. The perturbation theory of Floquet states 
for a Hamiltonian periodic in time arises in a simple and natural way. In Sect. 
10 we finally study the stationary counterpart of degenerate or quasidegenerate 
perturbation theory. Some ideas presented here in detail have been briefly 
outlined previously [7]. 

The forthcoming second paper of this series [4] will mainly be devoted to the 
treatment of electron correlation and especially to correlation effects on (first 
order or second order) properties. It will be shown that many-body perturbation 
theory (MBPT) can be formulated in the stationary framework, but that for the 
Moller-Plesset variant (MP) of MBPT some peculiarities arise due to the 
different treatment of one-particle and many-particle excitations. This has e.g. 
the consequence that in double perturbation theory one cannot satisfy simulta- 
neously a Brillouin theorem and a Hellmann-Feynman theorem. In a non-per- 
turbative treatment of correlation effects the superiority of methods based on a 
Brillouin-Brueckner condition will be shown. The present formalism also allows 
a straightforward access to coupled MC-SCF theory. In another forthcoming 
paper [6] the present formalism will be used for a reformulation of the IGLO 
method [5] for magnetic properties of molecules and the MC-SCF generalization 
of IGLO. To some extent the present work can be regarded as a preparation for 
these forthcoming papers [4, 6]. 

2. Lie-algebraic formulation of the variation principle 

We shall only admit normalized trial functions. In this case the variation 
principle of Eq. (1.2) reduces to: 

for ( ~ l ~ ) =  1 (2.1) 

Variations of ~ that conserve the norm can be formulated as unitary transfor- 
mations [9, 11-13]: 

k~ ---, ~ '  = U~ (2.2) 
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We require stationarity of /~ with respect to a family of unitary transformations 
and it is straightforward to require that these transformations form a group. Let 
us call it the 'variational group' N. This N is a unitary group, to which a Lie 
algebra &O is associated. Any U ~ N can be written as: 

U = exp X; X = - X * ;  X e &° r ~ &oc (2.3) 

All the X that figure in Eq. (2.3) are elements of the real Lie algebra &or of 
antihermitean operators X, which is the subalgebra of the full (complex) Lie 
algebra &oc associated with f# (see appendix A). 

Sometimes the requirement of stationarity with respect to all elements of a 
unitary group f# may be too restrictive and one will, e.g., be satisfied with 
stationarity with respect to two (or more) noncommuting subgroups of f¢ 
independently. We come to this case in Sect. 8. 

If we formulate the variation of E in terms of X we get by means of the 
L ie -Baker -Campbe l l -Hausdor f f  expansion (Hausdorff  expansion for short): 

P,--,ff,'=ff~+<~I[H, X l l ~ ) + ½ ( ~ ' [ [ [ H , X ] , X ] [ ~ ) + . . .  (2.4) 

and stationarity of /~  with respect to infinitesimal variations implies the station- 
arity conditions: 

(T I [H ,  X I I T )  = 0 VX e &or (2.5) 

For  the special case that X is a one-particle excitation operator (see Sect. 3) and 
kff a single Slater determinant this is known as Brillouin theorem [21-22] or 
Brillouin condition and for 7 j a multiconfiguration wave function as generalized 
Brillouin theorem or condition. The two alternative names (theorem or condi- 
tion) depend on whether one regards Eq. (2.5) as a consequence of stationarity 
or as a condition for stationarity. Multiparticle generalizations of the Brillouin 
theorem have also been discussed [23]. Relations of the form of Eq. (2.5) are 
generally referred to as hypervirial theorems [2, 9, 10]. There is a subtle concep- 
tual difference between Brillouin conditions and hyperviral relations in spite of 
their formal indistinguishability. While the former are directly related to a 
variational approach, the latter may be completely independent from it, e.g. may 
be satisfied for any appropriately chosen trial function (this is the case for 
momentum or torque theorems [2]). This distinction is not always clearcut. A 
typical hyperviral relation such as the classical virial theorem (see Sect. 3) is 
obviously related to a stationarity condition for the energy [9]. 

It does not make too much difference whether we require that Eq. (2.5) holds 
for all X e &o r or all X E &oc- The latter condition implies, of course, the former, 
but the converse is also true; if Eq. (2.5) holds for all X k E &or it also holds for 
all linear combinations of these Xk with complex coefficients, i.e. for all X s &oc. 

We also need a procedure to construct a wave function T which satisfies Eq. 
(2.5). We can do so by starting from a trial function • which is related to the 
desired 7 j as: 

kff = U~b; U e f# (2.6) 

where the unitary transformation: 

U = exp a; o- ~ &or (2.7) 

or rather its logarithm a is now our unknown quantity: 

E(a) = (~b I e - °H e ~ I~b) (2.8) 
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We expand a in a basis X k of ~q~r : 

a = ~, ckX  k (2.9) 
k 

and use the Hausdorff expansion for Eq. (2.8) to get: 

E(el,  . . c,) = E ~°) + ~ ckDk 1 • , +5  ~ CkclHkl + ' ' "  (2.10) 
k k,l 

E (°~ = <~ ln[~> (2.11a) 

D~ = ((hi[H, Xk] I ~ )  (2.1 lb) 

nkt = <@ ][[H, Xk], X,] I~> (2.1 lc) 

We call H = {Hkt} the Hessean for this variational problem. 
Stationarity of E with respect to variation of the ck leads to the conditions: 

Dk + ½ ~', (H~, + Hlk)C, + . . . .  0 (2.12a) 
z 

Alternatively one can expand the Brillouin condition of Eq. (2.5): 

0 = <4, I e-~[n, xk] e~l~b) = (~b [[H, Xk] + [[H, Xk], a] +- . . [~b)  

= Dk + ~ Hklct + ' ' "  (2.12b) 
l 

which agrees with Eq. (2.12a) except that in Eq. (2.12b) the Hessean is not 
symmetrized. The difference between Eqs. (2.12a) and (2.12b) has to do with the 
fact that the symmetrized Hessean is the second derivative O2E/Oc k (3ez at 
ck = c~ = 0, while Hkl is the second derivative at c~ = ok(opt), cz = 0. One easily 
sees that at the stationary point Hkl becomes symmetric due to the Jacobi 
identity 

<~ I[[H, xk], x , ] l~> = <~ I[[n, xA, xAl~>  + <~][H, [Xk, X,]][ ~> (2.13) 

The second term on the r.h.s, of Eq. (2.13) vanishes in view of Eq. (2.5) because 
[Xk, Xz] e 5¢ C. Provided that the test function • was sufficiently close to the 
desired ~ such that the ck are all rather small, a solution of the system of Eqs. 
(2.12) is possible by means of a Newton-Raphson algorithm, i.e. by iterative 
solution of the linearized system: 

D~,) + ~ H~)ctn+ 1) = 0 (2.14a) 
/ 

a (") = ~ c~)Xk (2.14b) 
k 

D~ ") = ((ble-~(">[H, Xk] e"('l(b) (2.14c) 

H(,O = (~91 e-"("~[[ H, Xk], XI] e ~(")] [~)  (2.14d) kl 

When the iterative procedure converges, the Brillouin condition of Eq. (2.5) is 
eventually satisfied. 

Whether one uses the asymmetric or the symmetrized Hessean in Eq. (2.14) 
can only affect the rate of convergence of the iteration scheme, not the final 
result, because eventually the Hessean will become symmetric. 

The system (2.14a) has a unique solution only if the matrix H (") is non- 
singular. This implies that one has to remove redundancies before one solves Eq. 
(2.14a). We come back to this point in Sect. 6. 
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I f  all eigenvalues of the converged Hessean are positive, the expectation value 
E is a local minimum, otherwise a saddle point or a higher-order stationary point 
[24]. 

Of course, the final result does not only depend on the choice of the 
'variational group' ~, but also on the trial function ~. Since all ~ '  that are 
related to a given • by means of a unitary transformation contained in ~, are 
equivalent to 4~, they lead to the same approximate results for the same 
eigenvalue of H. A particular variational approach is specified by ~ and by a 
member of the family of equivalent cb. 

To give an illustration (for more examples and details see Sect. 3) we may 
choose the variational group as the group of all unitary one-particle transforma- 
tions on spin-orbital level and ~b as an arbitrary single Slater determinant. This 
defines unrestricted Hartree-Fock theory. A generalized Har t ree-Fock theory 
on these lines has probably first been derived by B. Levy [22]. 

The Lie-algebraic formulation of the variation principle is not limited to pure 
states. It is easily generalizable to ensemble states. In this case the basic 
equations are: 

E = T r { g r  } (2.15a) 

Tr{[H, X]F} = 0, VX e ~ r  (2.15b) 

Most early papers on the construction of wave functions that satisfy certain 
hypervirial relations [9, 11] were concerned with variational problems that 
depend on a single parameter or occasionally on two parameters. In this context 
it was observed relatively late [13] that simplifications arise if there is a Lie- 
algebraic structure. In generalized SCF theory this structure has been exploited 
much earlier [22], at least implicitly. 

3. Examples of variational groups 

From now on we no longer use a tilde to indicate trial functions or energies. 
Our first example is the group of scale transformations [2, 9-12]. We consider 

the family of wave functions (with 2 real): 

~/2 = ~'/(~/~1, '~/~2,""" ~Fn) (3.1) 

Noting that by means of Taylor's theorem: 

~ = e x p  (2--1)  ~ ~=1 

and that 

We get 

~-X %- = ~ -  v~ e). (3.3) 
k = l  

~ = e x p [ ( 2 - - 1 ) k = ~  ~ Fk'VklTJl (3.4) 

The transformation given by Eq. (3.4) is not unitary (norm-conserving), but 
unitarity can easily be achieved by taking the antihermitean part of the argument 
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of the exponential. The group of unitary scale transformations hence has the 
elements: 

U~ = exp[(2 - 1)X] (3.5a) 

X = ½  ~ (fk" Vk +V~" ~k) (3.5b) 
k=l 

and the Lie algebra 5e r consists of the single element X and its multiples. 
Let V be homogeneous in the ~k of degree v, then the stationarity condition 

of Eq. (2.5) becomes: 

0 -- <~5. I[n, x ]  1~'~ ) -- (7 , ,  I z z  - v v  I ~ > (3.6) 

which is, of course, nothing but the well-known virial theorem, a special 
hypervirial theorem, that holds if the energy is stationary with respect to scale 
transformations. 

The one-parameter group of scale transformations characterizes a particular 
non-linear variational problem. Let us now consider linear variations for an 
N-electron system. As usual we start by taking a finite-dimensional N-electron 
Hilbert space in which an orthonormal basis {~be } can be chosen. The variational 
group is then that of all unitary transformations within the Hilbert space ~ u .  A 
basis of the corresponding complex Lie algebra Lac consists of the shift operators 
(for ~b k normalized to unity): 

Xk, = IqSk )(q~, I (3.7) 

while the operators: 

Xkz=Xk,--X,k; X~=i{Xk,+XzK } f o r k < l ;  X~=iXkk  (3.8) 

are a basis of the real Lie algebra &° r (see appendix A). 
Of course, one may choose a different basis {~b~} related to {~bk} by means 

of a unitary transformation within f¢ and the shift operators in terms of {q~ } are 
an equivalent basis of 5°c. 

The stationarity conditions of Eq. (2.5) become: 

xk,]l > = Vk, I (3.9) 
It is no loss of generality to choose the q5 k such that they diagonalize the matrix 
representation of the Hamiltonian H in JFN- Then one sees easily that Eq. (3.9) 
is satisfied if ~ is equal to one of the q5 k. 

The recommended (and, of course, well-known) way to satisfy Eq. (3.9) 
consists hence in diagonalizing the matrix representation of the Hamiltonian. 
Alternatively one can apply the Newton-Raphson approach characterized by 
Eq. (2.14) or an efficient variant of it, as shown in appendix B. 

If  in the same variational space we consider stationarity of the energy with 
respect to an ensemble, Eq. (2.15b) becomes: 

Tr{[ r ,  H]X~,} = Tr(q~, l [ r ,  H] I~bk ) = 0 (3.10) 

This is satisfied if the projections of F and H onto WN commute, i.e. if they have 
common eigenfunctions in ~gN, or that F is of the form: 

r = Z  
k 

in terms of the q~k that diagonalize the matrix (Ok lH[O1). 

(3.11) 



Stationary perturbation theory: I. Survey of basic concepts 271 

A very important variational group is that of one-particle transformations.  
The generators of this group (hence a basis of 50c) are the one-particle excitation 
operators a q, if one considers transformations on spin-orbital level, or Ep ° for the 
transformations between spinfree orbitals. 

a 
a q  = a q a p  = a t q a p  (3.12a) 

E ~ -  e~ - aQ~ + a ~  (3.12b) 

We follow the tensor notation for (particle number conserving) normal ordered 
products of creation and annihilation operators [14, 16]. The operator a p = atp 
creates an electron in spin-orbital Xp, while ap is the corresponding annihilation 
operator. The set {Xp } of spin-orbitals is, for convenience, chosen orthonormal. 

A basis of  50r consists of: 

a p - a q, i(a p + a q) for p < q; iaPp (3.13) 

and analogously in the spinfree case. 
The group generated by the a p is relevant for unrestricted Har t r ee -Fock  

theory, that generated by the E~ for restricted Har t r ee -Fock  theory. Either 
group defines a non-linear variational problem. 

Unfortunately the two-electron transformations: 

f ~ ' ~rs Pqt" l~rsm--~Pq" (3.14) C = exp p q a r s  , pq --rs 
t p,q,r,s ) 

that have been considered occasionally [20], don' t  constitute a unitary group 
(except for genuine two-electron systems), since the ar~ are not a basis of a Lie 
algebra. In fact, the commutator  of two-particle operators aPs q and avwt" also 
contains three-particle operators etc. So with respect to transformations of the 
type of Eq. (3.14) the present theory is not applicable, unless one includes for an 
N-electron system excitation operators of all particle rank up to N. 

The variational group corresponding to.full C I  is generated by the excitation 
operators: 

aPq, Pq tTPqr (3.15) 
a r s  , - s t u  , • • - 

up to N-particle excitation rank, in terms of a given one-electron basis {Zp }. 
Our main concern is stationarity of E. It may often also be recommended to 

check whether E is a (local) minimum, i.e. whether all eigenvalues of  the Hessean 
are non-negative [24]. 

Sometimes one is interested in relating stationarity or minimum properties of 
an energy expectation values with respect to two variational groups ~1 and ~2 
such that one is a subgroup of the other, say ~2 223 "~1" If  E determined as a 
minimum with respect to N1, remains a minimum with respect to f¢2, it is said to 
be 'stable' against extension from ~#1 to ~2. This is somehow an indication that 
~#l was well chosen. If  E changes to first order for first-order variations within 
fq2, but not within ~1, i.e. if (for 5°1 and 502 the Lie algebras associated with ~#1 
and N2): 

(~'l[n, x]l~e> ~ 0 for X e 5 0 2 , - ~ ¢ ~ 1  (3.16) 

E is said to be first order unstable. Second order instability is realized if the 
Brillouin condition holds for all X in 502, but if E is no longer a minimum, but 
a saddle point or some other stationary point, i.e. if the Hessean in terms of 502 
has at least one negative eigenvalue (but not that in terms of 501). 
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A typical case is that of Hartree-Fock instability [24]. Take a closed-shell 
state with ~ a closed-shell Slater determinant and choose ~el as the Lie algebra 
with basis operators defined by Eq. (3.12b) and Y2 with basis operators of Eq. 
(3.12a). Let the Brillouin condition of Eq. (2.5) be satisfied for all X ~ ~ .  Then 
Eq. (2.5) will automatically be satisfied for all X ~  5e2, because the extra 
operators in ~e 2 not contained in ~ are of the form: 

P ~  aQ~ - a ~  (3.17) 

These are not spin-conserving, but the RHF wave function • is a pure-spin state 
and the Brillouin matrix elements vanish for symmetry reasons. So 1st order 
Har t ree-Fock instability is not possible for a closed-shell state, but 2nd order 
instability may occur, with the effect that a spin-contaminated Slater-determinant 
wave function ~b has a lower energy than a pure spin 4. Since an energy lowering 
is achieved by a reduction of the symmetry one refers to this type of Hartree-  
Fock instabilities also as symmetry breaking. 

One may further extend the Lie algebra of operators in Eq. (3.12a) by 
including double creation and double annihilation operators: 

aPaq; apaq (3.18) 

One has then still a Lie algebra [14], but the corresponding Lie group is not 
particle-number-conserving. The Lie group generated by the operators in Eq. 
(3.12a) is known as U(n), the unitary group of dimension n, the Lie algebra 
augmented by the operators (3.18) generates SO(2n) the special orthogonal 
group of dimension 2n. The Brillouin conditions of Eq. (2.5) with operators of 
type. (3.18) vanish for particle-number non-conserving wave functions. So again 
there is no first-order instability. Second-order particle-number instability, i.e. 
energy lowering for a non-particle-number conserving wave function is supposed 
to be an essential feature of superconductivity ground states. 

4. The perturbation expansion 

We now consider a Hamiltonian H(2) that depends parametrically on 2. The 
expectation value to be made stationary is: 

E(2) = (~(2)  ]H(2) [ tP(2)); (~(2)  [ 7J(2)) = 1 (4.1a) 

H(2) = H o + 2H 1 + 22H2 + ' . .  (4.1b) 

The expansion in powers of 2 can be finite (a polynomial) or infinite (a power 
series), but in the latter case some non-trivial problems concerning the analyticity 
of H may arise. We assume here that H(2) is a polynomial, without specifying its 
degree. 

We choose the variational group so that the dependence of ~P on 2 can 
appropriately be described as [11, 12] (this is, in a way, the key feature of 
stationary perturbation theory). 

71(2) = e rgJo; Y(2) ~ 5°r ; 7/0 = gt(0) (4.2) 

In the philosophy of perturbation theory we make the ansatz: 

Y(2) = ~ 2kYk (4.3) 
k = l  
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and we expand the expectation value of Eq. (4.1) with 7/given by Eqs. (4.2, 3) 
in powers of 2: 

E(2) = ~ 2kEk (4.4) 
k = 0  

Eo = < olnol o> (4.5a) 

E1 = (7/0 [[Ho, Y,] + H1 [~I/0 ) (4.5b) 

E2 = (~o][Ho, r21 + l[[Ho, rl], YI] + [H1, gl] + H21 ~o) (4.5c) 

E3 = (~ol[Ho, I13] + l[[Ho, Y1], Y2] + l[[Ho, Y2], Y1] 
1 + ~[[[Ho, YI], Y~], Y1]-}-[HI, Y21-}-g[[H1, Y1], Y,] + [//2, Y1] -}- //31 ~o) (4.5d) 

We now require that the Brillouin condition of Eq. (2.5) holds for all 2, at least 
for 2 sufficiently close to 0. We hence insert Eqs. (4.2) and (4.3) into Eq. (2.5) 
and collect powers of 2 with the results: 

Co =-- <~o][Ho, X] 1~o) = 0 (4.6a) 

C~ = (~o[[[H o, X], Y~] + [H~, X] 1~o) = 0 (4.6b) 

C2 -= (~ol[[Ho, X], I12] + ½[[[Ho, X], Y1], Y~] + [[HI, X], YI] + [//2, X]l~o} = 0 

(4.6c) 

for all X ~ £,Q. 
Since by assumption Y ~ aa ,  we can if Eq. (4.6a) holds, i.e. if the stationary 

condition is satisfied for the uperturbed problem, omit all contributions 
(~gol[Ho, Yk]]~0) in Eq. (4.5b,c,d), in particular replace Eq. (4.5b) by: 

El ---- <~olnl 1~0) (4.7) 

which is, of course, the Hellmann-Feynman theorem in the framework of 
stationary perturbation theory [9]. 

If Eq. (4.6a) holds, Eq. (4.6b) can, by means of the Jacobi identity for double 
commutators and noting that [X, Y~] ~ &at be rewritten in the following equiva- 
lent forms: 

(%l[n,, x]  + [[H o, Y,], X] I eo )  = 0 (4.8a) 

(%1[X1, X] + ½[[Ho, X], Y~] + ½[[Ho, Yl], I7] I%)  = 0 (4.8b) 

Equation (4.8b) is easily seen to be the condition that E2 as given by Eq. (4.5c) 
is stationary with respect to variation of I11, or that the following functional: 

F(Y1) = (~ol[H~, Y1] +½[[Ho, Y~], Y1]]~o); 6F(Ya) = 0  (4.9) 

is stationary with respect to variation of Y1. We call Eq. (4.9) the Lie-algebraic 
Hylleraasfunctional (the relation to the conventional form of the latter is pointed 
out later in this section). 

If Eqs. (4.6a) and (4.6b) or Eq. (4.8) is satisfied, the expressions of Eqs. 
(4.5c,d) for E2 and E3 are simplified to: 

E2 = ½(%l[al, Y1] I ~o) + < oln21 o> (4.10) 

E3 = l(Wo[[[[Ho, Y~], Y1], Y1] I o) +½(tPol[[na, Y1], Yl]l%) 
+ (~ol[H2, YI] +//31Wo) (4.11) 

In order to evaluate E2 and E3 we only need to know YI. (This is a special case 
of Wigner's [2n + 1]-rule.) 
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If we know the Hessean of Eq. (2.1 lb) for the unperturbed Hamiltonian Ho, 
we can construct Y~ by solution of a linear system of equations. Let us expand 
Y in 5¢ r and define the matrix elements Vk" 

r, = E ckXk, Vk = <~eolEnl,Xk] l~'o>; Xk ~ ~r  (4.12) 
k 

then Eq. (4.6b) becomes for X = Xt: 

V~ + ~ H°kck = 0 (4.13a) 
k 

H°k = (To[[[Ho, Xt], Xk] ] To) (4.13b) 

As already mentioned previously (Sect. 2) a unique solution of a system like 
Eq. (4.13a) requires that H ° is non-singular, i.e. that redundancies are removed, 
as to be indicated in Sect. 6. 

To see the relation between Eq. (4.9) and the Hylleraas variation principle, 
we consider the variational group corresponding to a finite-dimensional Hilbert 
space with the basis of Eq. (3.7) of the Lie algebra. Choosing the Ck such that 
they diagonalize (¢k IHol¢, >, defining: 

YI I~o) = IT1) (4.14) 

and noting the antihermiticity of Y1 we get from Eq. (4.9)" 

F(T  0 = 2Re(To I VIT1 ) + (7/11Ho - Eol~'l ) (4.15) 

which is, in fact, the conventional Hylleraas functional. 
If one uses the formalism of this section for the unitary group of one-particle 

transformations generated by the operators of Eqs. (3.12a) or (3.12b) one is 
automatically led to coupled-Hartree-Fock theory. 

5. Multiple perturbations 

We now consider a Hamiltonian that depends on more than one perturbation 
parameter. For the sake of simplicity we choose: 

H(2, #) = H o + 2Vlo + #VOl (5.1) 

The counterpart of Eq. (4.1a) is then: 

g(2, #) = ( T  IHo 4- ;.V,o 4- #vol ]~> (5.2) 

and in analogy to Eqs. (4.2, 3) we have: 

T(2, #) = e YT o (5.3a) 

Y =  ~ ~ 2k#zYk,; k = l = 0 e x c l u d e d  (5.3b) 
k=0l=0 

Instead of Eq. (4.6) we then get (we write 0 for 00): 

Co - < ol[Ho, x ] 1 % >  = 0 (5.4a) 

C1o ~ ( 'ol[W0, x],  YlO] 4- [vlo, x] I = 0 (5.4b) 

Col -: x],  roll 4- [vol, x ]  [~ffo): 0 (5.4c) 
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1 g~ 1 H Cl, (~ol[[Ho, X], I1,1] +5[[[ o,X], Yo,], Y,o] +5[[[ o,X], Y,o], Yo,] 
+ [[Vlo, X], YOl] + [[Vm, X], Ylo] 17'o > = 0 (5.4d) 

Go - (7Sol[[Ho, X], Y2o] +½[[[Ho, X], Ylol, Ylo] +[[V,o, X], Ylo]l~"o> = 0 (5.4e) 

Coe-<ToI[[Ho, X], Yo2]+½[[[Ho, X], YOl], Yol]-l-[[Vol,X], Yodl~o>=O (5.41") 

The counterpart of Eqs. (4.4, 5) is: 

= ( 5 . 5 )  
k = 0 / = 0  

Eo = (7%[HolTSo) (5.6a) 

E,o = <7%1[Ho, I11o] + VlolTSo) (5.6b) 

Eol--<~'ol[Ho, gOl] q- VolJ~O) (5.6C) 

E2o = <k~ol[Ho, Y2o] + ½[[Ho, YlO], Ylo] -I- [glo , Yloll~/o) (5.6d) 

Eo2 = (}/tol [Ho, 11o2] q- ½[[Ho, Yol], 111011 -}- [Vol, Yol] J 7So) (5.6e) 

Ell----<~rtol[Ho, YII]-}-½[[Ho, Ylo], YOl]-~ ½[[Ho, Yol], YlO] 
+ [V,o, rol] + [Vol, Y,o] I ~Uo> (5.60 

We don't write expressions for E2,, El2 and E22 that are very lengthy. We can 
simplify Eqs. (5.6), provided that Eqs. (5.4) are satisfied. In analogy to Eq. (4.7) 
we get: 

Elo = (7'ol Vlo[~o) (5.7a) 

Eol = (TSol Vol IgJo> (5.7b) 

The simplifications of the type of Eq. (4.10) are: 

E2o -- ½< }Pol [Vlo, Ylol [ 7%) (5.8a) 

Eo2 = ½(7'ol[Vol, Yo,] I 7'o> (5.8b) 

Ell = 1(~"o1[Vlo, roll + [Vo,, r io] l%> (5.8c) 

E2I = <~ol½[[Vlo, rlo], roll ' + ~[[Vo,, Ylo], Y,o] 
l + ~[[V,o, Yol], Y,o] +l[[[Ho, Ylo], Yol], Ylo] 

-{-I[[[Ho, Ylo], Ylo], ]1oi] "l-I[[[Ho, Yol], Ylo], Ylo]It[Jo> (5.Sd) 

El2 is like E21 just with Vlo exchanged with Vol and Y1o with Yo,. 
Using Eqs. (5.4b,c) we can rewrite Eq. (5.8c) as: 

El, = -l< ol[[Ho, Ylo], Yol]-1-[[Ho, Yol], Ylo]l%> (5.9) 
which can by means of the Jacobi identity, the Lie-algebraic property and Eq. 
(5.4a) be written as: 

El l  = - -<l / to l [ [Ho,  Ylo], Y o l ] ] ~ o )  --  --(kUol[[Ho, Yol], Y l o ] ] ~ o )  (5.10) 

Using again Eqs. (5.4b,c) we get finally: 

Ell ~- (~o[[Vlo, Yol] [ ~F/o> = (~Tlol[Vol, Ylo] l I/Jo> (5.11) 

which is the equivalent of the exchange theorem of traditional perturbation 
theory [25]. 
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In a similar way, making extensive use of  the Jacobi identity of  Eq. (5.8d) 
can be reformulated to: 

E21 = l~l/Jo[[[V10, Ylo], Yol] Jr- [[glo, YOl], Ylo] -~- [[Vol, Ylo], YlO] 

+ [[[No, Yxo], Yo,], Ylo]l~o) 

= ½(kUo[2[[V~0, Ylo], Y01] 't-[[Vol, Ylo], Y10] '~ [[[Ho, rio], Ylo], 17Ol1 [~r/o> 

=½(%]2[[v,0, Y01], Y10] '{-[[V01, Y10], Ylo]-~ [[[Ho, Yol], I710], Ylo] ] ~[-/0> 
(5.12) 

The first of these three expressions is most symmetric, the other two are 
somewhat simpler. For the evaluation of  E21 only Y~o and Yo~ are needed. 

The expression for E~2 is again obtained exchanging the two subscripts. 
After a somewhat lengthy reformulation one gets the following result for E22 

in terms of Ylo, Yol, Y02 and ]711 (but not Y20). 

E22 = ½< ol[tg, o, Yl11, Yo~] + 2[[Vlo, Ylo], Yo2])+ [[g0~, Ylo], YI~] 
1 + [[[V~o, Y~o], Yo~l, Yo~] +½[[[Vol, Y~o], YOl], Ylo] +5[[[Vo~, Ylo], Ylo], Yot] 

+ ½[[[H0, Ylo], Yo2], Ylo] + ½[[[Ho, Ylo], Ylo], I102] -t-l[[[Ho, ~Yl0], Yll], Yol] 

+ ½[[[Ho, Y10], Yol], YH] + ½[[[[H0, Ylo], YOl], Ylo], Yol] [~Po) (5.13) 

An alternative expression is obtained if one exchanges everywhere the first with 
the second subscript. It then involves Y2o and Y~, but not Yo2. Equation (5.13) 
may look lengthy, but the corresponding expression is conventional double 
perturbation theory is hardly more compact. 

6. The spectrum of the Hessean and generalized RPA 

6.1. The Hessean in a basis of the complex Lie algebra 5~ 

In principle, the Lie-algebraic formulation of the variation principle as well as of 
stationary perturbation theory is possible in terms of the real Lie algebra ~ r  of 
antihermitean operators only. It is, nevertheless, often convenient to refer to the 
full complex Lie algebra ~ c  and to admit other than antihermitean operators, 
because a basis of A°c is often formally simpler, and also because one gains 
additional insight into the structure of the theory. We have already seen that it 
makes no difference for the generalized Brillouin condition of Eq. (2.5) whether 
we formulate it in terms of X ~ ~a~Tr or X e 2,°c. However, the original definition 
of Eq. (2.11b) of the Hessean as well as its specification in Eq. (4.13b) for the 
unperturbed Hamiltonian is only valid for anithermitean iV. A generalized 
definition is possible for arbitrary X, that reduces to Eq. (4.13b) for anither- 
mitean X, namely: 

Hkl = (g*0l [X'k, [Ho, XI]] [ 7*o) (6.1) 

We henceforth omit the superscript 0 on Hkt to indicate that it refers to the 
unperturbed Hamiltonian Ho. One is, of course, free how to choose Ho and the 
results of this section are independent of this choice. 
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By means of the Jacobi identity, the Lie-algebraic property and the stationar- 
ity condition we can show that an alternative expression equivalent to Eq. (6.1) 
is: 

Hk, = -- (gto][Ho, [Xt, X~]] I ~o)  - [x,~, Ho]] 17'o) 
= (7~o][Xt, [Ho, X'k]] IgJo) (6.2) 

From Eqs. (6.1) and (6.2) one sees immediately that __H is a hermitean matrix, i.e. 
Hk~ = H*. For the special case that X~ = -Xk ,  H is-even real symmetric. 

If  we define the superoperator o~ of commutation with H0: 

~t~X = [Ho, X] (6.3) 

the matrix elements of the Hessean can also be written as: 

Hk, = (~Uo[[X ~, ~X~] ] 7~o) = (k~o[ [Xt, ~X~]  [kUo) (6.4) 

As a hermitean matrix H has only real eigenvalues and an orthonormal set of 
eigenvectors. The rank of __H is equal to the number of its non-zero eigenvalues. 

In perturbation theory in order to construct E2 and E 3 w e  have first to 
evaluate Y1 from Eq. (4.8a) (or the equivalent expressions of Eqs. (4.6a), (4.8b)). 
While in Sect. 4 we have expanded Y1 in a basis of ~ r  with the result of Eq. 
(4.13), we now expand it in a basis {Xk} of 5¢~. 

Yl=- ~ bkXk; Vk= (~Po[[H1,Xkll~Po); Xk s Lfc (6.5) 
k 

such that: 

Htkb k + V* = 0 (6.6) 
k 

6.2. Eigenvalues, regularization, and inverse of the Hessean 

The linear system of Eqs. (4.13a) or (6.6) has unique solutions only if H is 
regular, i.e. has no zero eigenvalues. What we need is hence not the matrix H in 
terms of a complete basis of ~ r  (or £fc), but rather in terms of a non-redundant 
set. Formally this can be achieved by solving the eigenvalue problem: 

Hk, c~ ") = ooze (~) (6.7) 
l 

and discarding all eigenvectors with zero eigenvalues. In practice a non- 
redundant set of basis operators Xk is often found by inspection, so that a 
regularization via solution of Eq. (6.7) is not necessary. In the Hart ree-Fock 
case for a closed-shell state a basis of ~ c  are the operators aPq (see Eq. (3.12a)) 
in terms of a given orthogonal one-electron basis Zp- Let the spin-orbitals ;6 be 
occupied in 7/o and the )/a unoccupied (virtual), then a non-redundant operator 

i basis (with respect to 7%) consists of the operators a7 and aa. 
We come back to the regularization of Eq. (6.6) later in this section. We 

assume now that a basis has been found such that _H is non-singular. 
One easily sees that the Y1 constructed from E ~ .  (6.5, 6) is antihermitean. 

In fact let us alternatively to Eq. (6.5) expand Y1 in the X*k. Then from the 
counterpart of Eq. (6.6) the expansion coefficients turn out to be - b * .  

In order to construct the first-order perturbation operator Y1, the solution of 
the linear system of Eqs. (6.6) is the method of choice if only one perturbation 
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is considered. However, if one wants to study several perturbations for the same 
unperturbed problem, other approaches may be preferable. One of these is to 
first invert H (of course, after having eliminated all redundancies in the operator 
basis). 

G = H 1 (6.8) 

One then gets (provided that H 2 = 0, cf. Eq. (4.10)): 

YI = ~ bkXk = - ~ XkGktV~" (6.9a) 
k k,l 

E2 = 1 Z bk Vk = -- ½ Z VkGk, V* (6 .9b)  
k k,l 

The inverse of the Hessean obviously plays a similar role as the resolvent in the 
conventional formulation of perturbation theory. For a unique definition of _G_G 
one must, however, worry about the normalization of operators. Imagine, e.g., 
that all basis operators are multiplied by a common scalar 2. Then H is 
multiplied by 2 2, _G by 2-2, the VI by 2, while Y1 and E2 remain invariant. We 
come back to thispoint  below. 

It is, of course, possible to construct the inverse of Lt in the spectral 
representation. Let us define the operators: 

(2~ = ~ c(fl)Xk; Xk ~ 5 f  c (6.10) 
k 

with the c~ ") satisfying the eigenvalue Eq. (6.7) and the eigenvectors normalized 
to 1. Then we get: 

/t,~ = (7~o1[O~, [Ho, Or]] 1 7~0) = cou6,v (6.11) 

and ~ is a diagonal operator with diagonal elements co7 1 . We can then expand 
Y1 in the basis of the Q, (for o~ u ~ 0) and get: 

- ~* (6.12a) 

E2 =½ 2 d~ l ?  = - Z l~*°~ -1 l?u (6.12b) 

I~ u = (kUol[H,, O,] I ~Uo) (6.13) 

This reminds us of the sum-over-state expressions of traditional perturbation 
theory and it suggests that the eigenvalues ~o, of the Hessean may be interpreted 
as transition energies. However, the same reservation must be made as with 
respect to the inverse _G o f / / .  Imagine that all basis operators are multiplied by 
2, then c% is multiplied by 2 2, (2, and V~ by 2, but Y~ and Ez remain unchanged. 
In order to identify the c~ with transition energies we must be able to normalize 
operators, which requires that we have first to define a scalar product in operator 
space. 

Before we study this problem of the normalization of operators, a remark 
concerning the regularization of the system of Eq. (6.6) by elimination of 
eigenoperators Ou~with c% = 0 is in order. Two cases are possible. In case (a) the 
matrix elements V u vanish for all Ou with cou = 0. Then the solutions Y1 of the 
regularized and non-regularized system of Eq. (6.6) differ only in an arbitrary 
solution of the homogeneous system Hg = 0, which has no effect on E2. The 
regularization only serves to make the solution unique, it corresponds to a 
specific normalization of the wave operator in conventional perturbation theory 
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[16]. In case (b) some 17, for o9, = 0 do not vanish. Then the non-regularized 
system of Eq. (6.6) has no solution at all and the solution of the regularized 
system may not be meaningful. This case is, e.g., realized if kgo is degenerate with 
some f2, 7/o. Then a generalization of stationarity perturbation theory to degen- 
erate states is necessary. We come to this in Sect. 10. 

6.3. A metric in operator space. Model transition operators 
and transition energies 

Note that the following considerations are only relevant if we want to define 
model excitations within the framework of the variational group. For the 
evaluation of Yi or E2 it is perfectly straightforward to diagonalize H in the 
naive sense and to use Eqs. (6.12-13) without worrying about normalization. 

Assume for a moment that H .  is an exact excitation operator. It then 
satisfies: 

~ / 7 u  = [H0,/7.1 = e ,H,  (6.14) 

where e, is the corresponding exact transition energy. Then: 

(Vo l [m,  in0, U.]] I ~0} = a. (~'oltU~, a . ]  I e0 )  (6.15) 

The expression on the left side is the matrix element of the Hessean in terms of 
the 17.. This suggests to regard: 

Akz = (k~ol[X~, J(,] J ~o)  (6.16) 

as the desired scalar product in operator space. Unfortunately, this Akt is not a 
scalar product in the strict sense since it is not positive-definite. Such products 
are sometimes referred to as 'binary products'. One might define a genuine scalar 
product as (~g0[X~X~]~go), but this would involve an ordinary product of 
operators rather than a Lie product and would hence not be consistent with the 
Lie-algebraic structure of the theory. With the binary product (6.16) we can now 
replace the eigenvalue Eq. (6.7) by: 

nkla~ ") = a. ~ Ak, a~ ") (6.17) 
l l 

The eigenvalues and eigenvectors will no longer be the same as in Eq. (6.7), so 
we have changed their symbols. 

The system of Eq. (6.17) is reminiscent of the random-phase approximation 
(RPA) and it represents in fact its straightforward generalization to arbitrary 
variational groups. We note that any variational group, which has originally been 
introduced in view of minimizing an expectation value, automatically generates a 
model excitation spectrum for the respective state. 

The eigenvectors fi(") are orthogonal in the sense: 

a~")Akla} ~) = 0 for ~, ~ a~* (6.18) 
k,l 

and we can orthonormalize them so that: 

a~k ")* Akla~ ~) = -b 6,v (6.19) 
k,l 

where some of the vectors are 'normalized' to + 1, the others to - I .  We define 
the model excitation operators (changing now the meaning of H~ with respect to 
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Eqs. (6.14, 15) from exact to model excitation operators)" 

/7, = ~ a~'!Xk (6.20) 
k 

and these are orthogonal with respect to the metric characterized by A and 
normalized to either + 1 or - 1. For the matrix elements of the Hessean interms 
of the 17, we get: 

= [Ho,/Tv]l 'o  = I 

=e~,Lv = L~e~,6~,v = +e~,6~,v (6.21) 

We can, in analogy to Eqs. (6.12-13) expand Y1 in the H~ (for 5, 50) :  

Y, = Y Lrl. = - Z v rl. (6.22a) 

E2 ~ Z f ~ V ~ = - l ~  , - 1  = A~,V~,~ u V~ (6.22b) 
# # 

I~ u = (~o[[H~, H~]] ~0)  (6.22c) 

A few comments on the eigenvalue system of Eq. (6.17) are in order. While the 
'eigenoperators' of the original Hessean are either hermitean or antihermitean 
(i.e. H factorizes into noninteracting blocks corresponding to hermitean and 
antihermitean Xk) this is no longer the case for the eigenvectors in the sense of 
Eq. (6.17). These are neither hermitean nor antihermitean. Pure hermitean or 
antihermitean operators have even zero norm with the metric of Eq. (6.16). 

On the other hand, if H~ is an eigenoperator to the eigenvalue 5~, then also 
H~ is an eigenoperator, but with eigenvalue - e * .  This is, e.g., seen if one writes 
the eigenvalue Eq. (6.17) in the form: 

<~01[X*, [Ho, nu] I ~o> = e, <~o[[X*,/7,] I~0> (6.23a) 

and takes the complex conjugate: 

<~o][X,[Ho, nL]]['eo>= -e~* <~'ol[X, HL] I ~'o> (6.23b) 

The Y~ constructed from Eq. (6.22a) is antihermitean, which means that alterna- 
tively to Eq. (6.22a) we can write: 

• t Y~ = - Z f ~ / 7 ,  (6.23c) 
# 

Of course, eigenoperators with excitation energy 5, = 0 in Eq. (6.17) must be 
discarded. It is not obvious that a non-redundant operator basis in the 'naive' 
metric and the metric defined by d should necessarily be identical, i.e. that the 
operator spaces corresponding to eq-genvalues co, = 0 of Eq. (6.5) or e, = 0 of Eq. 
(6.17) will generally agree. In those cases when a non-redundant basis is found 
by simple inspection this will probably be the case, e.g. for the example 
mentioned after Eq. (6.7). 

Generally one cannot exclude that some eigenvalues eu are complex. This 
indicates that the chosen variational group does not necessarily generate a 
physically reasonable model excitation spectrum, but this does not invalidate the 
construction of Y1 or E 2. 

The model excitation energies 5~ introduced in a somewhat ad-hoc way as 
eigenvalues of the system of Eq. (6.17) will get a more direct physical meaning 
in the context of time-dependent theory (Sect. 9). 
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Let us now consider a somewhat restricted case. Assume that a non-redun- 
dant basis of ~ c  can be found which consists of two subsets such that the 
elements X u of one set have the property (which we call the excitation-deexcita- 
tion separation condition): 

X~l~o> =0 ;  X. I~o> # 0  (6.24) 

and that the elements of the other set are just the hermitean conjugates Z ,  = X* u. 
Then this condition (Eq. (6.24)) guarantees that one can uniquely define a basis 
of excitation and deexcitation operators with respect to 7~o . It does not guaran- 
tee - as we shall see soon - that a condition analogous to Eq. (6.24) also holds 
for the eigenoperators H, .  Equation (6.24) does, e.g., hold in coupled-Hartree- 
Fock theory for ~o a single Slater determinant, but not necessarily in coupled 
MC-SCF theory. If  Eq. (6.24) holds, H and A have the following block structure: 

H = B* A* A =  - S *  (6.25) 

(~o][X~, X~] [ 7~o> = (TJo]X*,X~ [~o> = Suv (6.26a) 

<~o[[X*u, Z~] ] 7J0> = (7%][Z~, Xv] 17%> = 0 (6.26b) 

(7~o][Z*u, Z~] ] 7%> = - (7%]X~X, ]~o) = -S~u (6.26c) 

<~o[ [X'u, [Ho, Xd] I 7%> = A,~ (6.27a) 

(~0[[X~, [Ho, Z~]] I ~o> = B,v (6.27b) 

In this case the eigenoperators H ,  are linear combinations of both the basis 
operators Xk and the Zk = X2. As a consequence, one gets: 

//~ ]kUo> #0 ;  H~ 1~o> # 0  (6.28) 

The second of these inequalities is as desired, since action of an excitation 
operator on ku o should change this to the wave function of an excited state. The 
first inequality in Eq. (6.28) is less welcome, because an exact deexcitation 
operator should annihilate 7'0- If  f/* fails to deexcite 71o, this is an indication of 
some inconsistency. E i t he r / / i s  a too poor approximation to the exact excitation 
operator or 7' o is a too poor approximation to the exact ground state. 

This phenomenon is known from traditional RPA theory where the one- 
particle excitation operators in Eq. (3.12a) are taken as basis of ~c .  A remedy 
has been proposed with the somewhat awkward name 'killer condition' [26], 
which consists in changing ~0 so that/-/~]~g0> = 0. In the present context this 
would not make too much sense, but rather violate the main philosophy of 
stationary perturbation theory. 

A still more special case is realized if the B block vanishes. Then we only 
need to solve the eigenvalue problem: 

AE~, = ~,Sg, (6.29) 

in order to get the model excitation energies. The e, are all real and to each e, 
also - zu  is an eigenvalue of Eq. (6.17), i.e. we get pairs of corresponding 
excitation and deexcitation operators and energies. The RPA-inconsistency of 
Eq. (6.28) then no longer arises. 

The appearance of both model excitation and deexcitation operators and 
energies is characteristic for the Lie-algebraic formulation of the variational 
approach, and it even arises for linear variations, where the variational group is 
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generated by the shift operators of Eq. (3.7). Let us consider a basis {~bu } of J/t~N 
such that the matrix representation of  the Hamiltonian is diagonal in this basis, 
i.e.: 

(~b~ [Hol~bv ) =E~,6~,v; (q~, [~bv) = 6,v (6.30) 

and let ~go = ~bo, then a non-redundant set of basis operators consists of: 

(6.31) 

their number is just 2N - 2, if N is the dimension of the basis in ~/gu. 
For the matrix elements (6.26, 27) we get: 

(T0][X~0, X~o] [ To) = 6,~ (6.32a) 

I X o v ] [  - -  - (6.32b) 

(Tol[X~o, Xov] ] 7%) = (TJo[[Xo*~, X~o] [ 7%) = 0 (6.32c) 

( 7% [ [X~o, [Ho, X~o ]] [ ~Uo ) = 6,~ (E u - Eo) ( 6.33 a) 

(7% I [Xo*,, [Ho, Xov]] [ 7~o) = 6,v (E~, - Eo) (6.33b) 

(7%[[X~o, [Ho, Xov]] ] To)  = (7% I [Xot,, [H, X~o]] 7~o) = 0 (6.33c) 

The off-diagonal blocks of H and A_ in Eq. (6.25) vanish. The eigenvalues of the 
first block are just the mod~-excit~ion energies E, - Eo with eigenoperators X~o 
and those of the second block are the deexcitation energies E o - E ,  with 
eigenoperators X0~ = X~o. 

Let us stress again, that for the evaluation of  second-order properties E2 by 
perturbation theory the question how good the 'model excitation energies' 
generated by the variational group, approximate the exact spectral transition 
energies, is of little relevance. The two requirements that the variational group 
leads to a good approximation for E2 and to a good approximation for the 
excitation spectrum, are often not even compatible. This has to do with the fact 
that the model spectrum is necessarily discrete, while the physical spectrum 
contains a discrete and a continuum part. To take care of the role of  both parts 
is only possible via a model spectrum that has little agreement with the physical 
discrete spectrum. This has also been known in the traditional formulation of 
perturbation theory in a linear variational space. 

The situation changes somewhat if the perturbation is time-dependent and 
periodic since then resonance phenomena related to spectral excitations arise, 
and the model excitation energies e, in the sense of Eq. (6.17) get a very concrete 
meaning (see Sect. 9). 

7. Real and complex Hamiltonians 

Often (essentially in the absence of magnetic interactions) the Hamiltonian is 
real. In this case its eigenfunctions can be chosen real and it is sufficient to 
require stationarity in the sense of Eq. (2.1) for the subgroup f#o of unitary 
transformations U that transform a real ~ to a real ~ ' ,  i.e. for the corresponding 
subgroup f¢o of real orthogonal transformations imbedded in f¢. The generators 
of f¢o are real antihermitean operators (real in the same sense as the operators 
U e f¢o are real, see appendix A). The real Lie algebra 5qr of  f¢ is a direct sum 
of the Lie algebra ~ o  of f¢o and the coset cgi of imaginary antihermitean 
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operators (note that off; is not a Lie algebra since the commutator  of two 
imaginary operators is real). 

For  a real H the Brillouin condition of Eq. (2.5) is automatically satisfied for 
all X ~ 50i, since the expectation value of an imaginary hermitean operator 
vanishes. Hence if Eq. (2.5) holds for all X E ~ o  it holds for all X e 5er and all 
X ~ e  c. 

If H = H0 + 2H1 and if both Ho and H~ are real, stationary perturbation 
theory as outlined in Sect. 4 can be formulated entirely with reference to 5e o 
instead of 5e r. This also holds if H is a higher-order polynomial in 2 with all 
coefficients real. 

The next common case is that Ho is real and H~ imaginary, or to include the 
case of magnetic perturbations, that Hk is real for k even and imaginary for k 
odd. We see from Eq. (4.5) that then the Yk must be imaginary for k odd and 
real for k even. If  we are only interested in E2 and Y1, we have to solve Eqs. (4.6) 
or (4.8) for Y1. Obviously, Y1 is a linear combination (Eq. (4.12)) of the Xk ~ cgi. 
The VI, Htk and B k in Eq. (4.13) are then real. 

Note that the Hessean matrix Hkt needed in Eq. (4.13) is different for real 
and imaginary perturbations. In the former case it is defined as Eq. (2.11b) in 
terms of a basis Xk ~ 2'o, in the latter case for Xk ~ (g/. 

The formalism of Sect. 6 requires a basis of the full complex Lie algebra Aa~, 
it is especially not possible to formulate the eigenvalue problem of Eq. (6.17) in 
terms of a basis of 5e r or 5°o only. In the general case there arises no 
simplification for either real or imaginary perturbations. 

These general considerations play a role in coupled-Hart ree-Fock theory for 
real and imaginary perturbations repectively (see paper II of this series [4]). 

8. Stationarity with respect to two or more independent variational groups 

Often one does not consider stationarity of the energy with respect to one 
variational group, but with respect to two or more independent groups. Two 
situations are possible: (a) the elements of the two groups commute, (b) they 
don't  commute. 

In the case (a) one can define the direct product (# = ~ 1 ® N 2  of the two 
groups and regard this as the new variational group. The new Lie algebra 5(' is 
then simply the direct sum of the two Lie algebras &o __ ~ ,  • ~2 .  Stationarity 
with respect to N is equivalent to stationarity with respect to ~q~ and f~2 
independently. 

Case (b) is more complicated. There is, of  course, an embedding group fq 
that consists of all (multiple) products of elements of  fql and ~#2, and the 
corresponding Lie algebra ~ consists of  all elements of  ~e~ and ~(~2 and their 
linear combinations plus single and multiple commutators from elements of 5~ 1 
and LP2. To require that a Brillouin theorem is satisfied for all X s ~ is a much 
stronger condition than that it holds for all X ~ 5el and all X s 5¢ 2. Usually we 
will not demand that: 

<~I[H,[X,,X2]][~>=O; X,E~I, X2E~2 (8.1) 

This has the immediate consequence that, except for special choices of X~ and 
x2: 

<~ I[[H, X,], x2] I ~>  ¢ <~ I[[H, x2], x,]l~> (8.2) 
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i.e. that the Hessean defined by Eq. (2.1 lb) is non-symmetric (even if stationarity 
is achieved). This is, at first glance, puzzling. Let us look, for a moment, at the 
conventional formulation of the variational approach. One characterizes the 
admitted wave functions uniquely by a set of parameters, say xl,  x2 . .  • x, .  The 
energy expectation value E is then a function of these parameters and the 
stationarity conditions are: 

OE 
- - = 0 ;  k = l , 2 . . . n  (8.3) 

In a Newton-Raphson approach to solve Eq. (8.3) starting from some initial 
values of the ~k one needs the second derivatives, which are, of course, symmet- 
ric: 

02E OZE 
- Hk ,  ( 8 . 4 )  

and which constitute the Hessean, while Eq. (8.3) corresponds to the Brillouin 
condition of Eq. (2.5). 

In the present Lie-algebraic approach we characterize the operator U that 
transforms an initial function • to the optimized functions 7 ~ in terms of a set 
of parameters cg : 

U = exp Z CkXk (8.5) 
k 

This is always possible and unique if the Xk are a basis of the Lie algebra 
~ .  It is afor t ior i  so if the Xk commute. E is, for given ¢ and U, a function 
of the ck. The Brillouin conditions of Eq. (2.5) are equivalent to Eq. (8.3) 
and the Hessean of Eq. (8.4) agrees with the symmetrized Hessean of Eq. 
(2.12a). 

If  we consider two variational groups that don't commute, we can write a 
common transformation as: 

U = U 1 U2; U1 ~ -~1, U2 ~: -~2 (8.6a) 

Up = exp ap; trp = ~ cF)X~ p) e ~ p  (8.6b) 
k 

However, the result depends on the order of the factors, and a unique 
parametrization of  the wave function and hence a unique definition of a varia- 
tional approach requires that one specifies the order in which elements of  ~1 and 
~2 are to be multiplied. If  this specification is made, second derivatives of the 
energy are again symmetric, although the Hessean in the definition of Eq. (2.1 lb) 
is not. Namely: 

~2E ~2E 
ac~O Oc~2 ) - 0c~2 ) ac~l ) - (~g [[[H, X(kl)], Xt2)] [ ~ g} (8.7) 

For the order specified by Eq. (8.6), one must commute H first with an element 
of 5¢1, then with one of 5¢2. 

A Newton-Raphson approach is straightforward, based on: 

E = (¢[U~U~HU1U2[~} = (~  [H + [H, 0.1] + [H, a2] 

i H --~ ~[[ , 0"1] , 0"1] "q-½[IN, 0.2], 0-2] + [[H, o-1], (r2] + " - [ g b )  (8.8) 
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aE 
ac(kl) ~" <(~ IlK, X "(1)] --t- ½[[H, X~l)], o"1] + l [ [n ,  o'1] , X (1)] 

+ [[H, X(k°], a2] + ' "  "1~> = 0 (8.9a) 

dE 
i H = <~ [[H, X(~ ~)1 + ~[[ , X~)], ~=] + }[[H, o~1, X(~ 2~] 

~c(~ ~) 

+ [[H, a~l)], X}~ 2)] + . . .  I~b} = 0 (8.9b) 

In stationary perturbation theory in order to be consistent we make the ansatz: 

7-'(2) = e r~l~(~) e r~2~(z)~Uo; y(1) ~ ~'Q~I; y(2) e L~2 (8.10) 

and expand y(o and y(2) as in Eq. (4.3). Subscripts count orders of perturba- 
tions theory. The result for the Ek defined by Eqs. (4.4, 5) is then: 

E1 = (~ol[Ho, r(~ 1) + Yf)] + Hll ~o} (8.1 la) 

E2 = ( 'Col[No, Y(21) q- Y(2 2)] '~ ½[[No, y~l)], y~l)] .q_ ½[[No, y~2)], y~2)], 

_[_ [[Ho ' y~l)], y~2)] -t- [H1, y~l) q_ y~2)] q_/-/21 ~eo> (8.11b) 

The counterparts of the stationarity condition of Eq. (4.6b) are: 

(7Jo [[[Ho, ~['(kl)], y~l) ..~ y~2)] + [Hi ,  X-(kl)] I ~[/o} = 0 (8.12a) 

(To [[[Ho, X~2)], y~2)] + [[Ho ' y~l)], X~2)] + [H1, X(2)] ] To ) = 0 (8.12b) 

The stationary results of  Eqs. (4.7) and (4.10) become then: 

El = (~PoIHII~Po) 

E2 = ( ~ 0 [ ½ [ n l ,  Y(11) + I7(2)] + Hzl 7J0} 

An example for a variational approach with two non-commuting variational 
groups is MC-SCF. Here f#, is the group of linear CI type variations within the 
'active' space, while N2 is the group of  orbital rotations like in ordinary SCF 
theory. Consider, e.g., the case of CAS-SCF and label occupied (inactive) 
orbitals as i , j ,  k . . . .  partially occupied (active) orbitals as x, y, z . . . .  and virtual 
(unoccupied) orbitals as a, b, c . . . . .  Let us start from a Slater determinant, 
constructed from Ni orbitals of type i and N x  orbitals of type x. We now consider 
the Lie algebra with basis: 

. x xyz (8.13a) ~ 1  ay, az ~y, auvw, • • • 

With a unitary transformation generated by this Lie algebra ~1 we can create 
any CI w i t h i n  the  ac t i ve  space .  We then apply any one-particle transformation in 
the entire orbital space generated by: 

~Lt72: a~, a x, a a and hermitean conjugates (8.13b) 

This performs the desired orbital rotations. 
The groups obviously don't  commute, since, e.g., (for different labels differ- 

ent): 

x y  = ¢ ,~O 1 ~, (8.14) [axe,  a~] a~,aY 

As long as there are at least two electrons in active orbitals, the embedding group 
~# of  cg 1 and ~2 is that of  full CI generated by the basis of Eq. (3.15) of 5e~. 
(Labels p, q, r, s in Eq. (3.15) refer to arbitrary orbitals within the given basis.) 
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In fact, commutation of the result of Eq. (8.14) with aiZ leads to aiu"Y, by two 
more commutations with a~ and a y we arrive at a~ b, while commutation of aTf 

• x z  a x z  " " a b e  with ayu leads to ai,v, from which we can arrive at aijk etc. So CAS-SCFappears 
as an approximation to full CI, in which stationarity with respect to two subgroups 
of the variational group of full CI is achieved. 

Another example would be the combination of a linear variational approach 
with f#2 generated by the shift operator of Eq. (3.7) and scaling with ff~ 
generated by Eq. (3.5b). 

Since there has been some discussion in the literature [9, 10, 13] on the 
meaning of stationarity with respect to two non-commuting variational groups 
(using here the notation of the present paper) the following points must be made 
clear. 

1. Starting from a trial wave function and improving it iteratively in a Newton- 
Raphson type approach it is always possible to construct a wave function that is 
simultaneously stationary with respect to both groups. The coupling elements 
between the two groups in the Hessean have, of course, to be taken care of. 

2. Exchanging the factors U1 and U2 in the unitary transformation of Eq. (8.6a) 
defines a different variational problem. Again it is possible to construct a wave 
function stationary with respect to the two groups, but this need not be (and will 
in general not be) the same as that obtained with the other order• 

3. Often there is a 'natural order' of the two transformations, which leads to a 
convenient expression for the matrix elements, while the opposite order is 
difficult to handle. This is, e.g., the case for the example of MC-SCF mentioned 
above. 

In a somewhat different context a decomposition of the relevant Lie algebra 
into a maximally soluble ideal and a semisimple subalgebra [17], leads to some 
simplifications. All Lie algebras considered here are simple and hence not 
decomposable. 

9. Time-dcpendent perturbation theory 

9.1. The stationarity principle 

An approximative solution of the time-dependent Schr6dinger equation: 

H - i h - ~  ~ = 0  (9.1a) 

is often based on the so-called variation principle of Frenkel [27] (which can 
even be traced back to Dirac [28]): 

0 
(671 [H - ih ~t [~)  = 0 (9.1b) 

This is certainly not a 'variational principle' in any strict sense, not even a 
stationarity principle since there is no functional of ~ for which Eq. (9.1b) is the 
stationarity condition. This is mainly due to the fact that ih~/Ot is not a 
hermitean operator in the ordinary Hilbert space (see Sect. 9.7). Various 
discussions and possible improvement of Frenkel's principle can be found in the 
literature [2, 18, 29-33]. Nevertheless, if Eq. (9.1b) holds for all possible ~ this 
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is a necessary and sufficient condition for ~ to solve Eq. (9.1a). One can rewrite 
Eq. (9.1b) as: 

<gt[X (H- ih ~) lgl) =O, (9.1c) 

which is equivalent to Eq. (9.1b) if one considers all possible X. The questions 
arises what Eq. (9.1c) implies if one restricts it to a set of X E 5e c, that constitute 
the Lie algebra of a variational group. If we replace X in Eq. (9.1c) by X* and 
take the complex conjugate and then the sum as well as the difference of this with 
Eq. (9.1c) we get: 

t3 CX i 
~t (kulXI ~>  = <ku I -fir Iku> + h (~u I[H, X] ]ku> (9.2a) 

1 i-~ (7SI[H,X]+,'P>=(~P]X ~t )--I~ X[7 s) (9.2b) 

We recognize Eq. (9.2a) as the 'time-dependent hypervirial relation' or 'general- 
ized Ehrenfest theorem' [2] or as Heisenberg's equation of  motion for expecta- 
tion values. This looks like the searched-for time-dependent generalization of the 
generalized Brillouin theorem of Eq. (2.5). The meaning of Eq. (9.2b) is less 
clear. 

Let us, for the moment, try to formulate the time-independent case in a 
similar way. We want to satisfy the time-independent Schr6dinger equation: 

by means of the condition: 

H t f  = EkU (9.3a) 

= 0  

E) = 0 

(9.3b) 

(9.3c) 

in perfect analogy to Eqs. (9.1b) and (9.1c). In analogy to Eq. (9.2) we get: 

( ~  I[H, X][7  s )  = 0 (9.4a) 

½(~u ][H, X]+ [ku) = E ( ~  x [X[ ~u> (9.4b) 

By comparison of  the derivation of Eq. (9.4a) - which agrees with Eq. (2.5) - 
from stationarity of (~u ]HI }/I) we conclude that Eq. (9.4b) is not needed (see 
also ref. [18]), except for the special case X = 1 or any other constant, i.e. for 67/ 
proportional to ~, where Eq. (9.4b) reads: 

<7s IH [ ~u> = E < ~  17t > (9.4c) 

We hence ignore Eq. (9.2b), i.e. the counterpart of (9.4b) except for X = 1, 
which means: 

2ih <elnl '> = e - h  - e (9.5a)  

and use this together with Eq. (9.2a) as the basis of stationary time-dependent 
perturbation theory. While Eq. (9.4a) gives no nontrivial result for X = 1, we get 
from Eq. (9.2a): 

0t (Ts 17s> = 0 (9.5b) 
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This obviously expresses the conservation of the norm of the wave function and 
the unitarity of the time evolution. We satisfy Eq. (9.5b) automatically by 
choosing T normalized to unity and by considering only unitary variations and 
unitary time-dependent changes of ~u. 

Starting point for the following derivations is hence that Eq. (9.2a) holds for 
all X e 5P c, together with Eq. (9.5a). 

We shall develop this formalism in Sect. 9.2. There we shall concentrate on 
the case of a time-independent unperturbed Hamiltonian and a time-dependent 
perturbation. In this case those states are of special interest that go to stationary 
states in the limit 2 ~ 0 .  These states conserve some properties of stationary 
states. For them the energy deserves some interest, although it is strictly not a 
constant of motion. We shall tentatively define the energy as the expectation 
value of the Hamiltonian, but we shall see later (Sect. 9.6) that there are other 
and more appropriate definitions. 

After a short comment on the time evolution in Sect. 9.3, we study the special 
cases of an adiabatically switched static perturbation in Sect. 9.4 and a per- 
turbation periodic in time in Sect. 9.5. There the results of Sect. 6.3 will turn 
out to be important. We then reconsider the definition of the energy in Sect. 
9.6 and define a so-called pseudoenergy for which a Hellmann-Feynman 
theorem holds. We then establish the relation to the concept of Floquet states in 
Sect. 9.7. 

9.2. Stationary theory for a time-dependent perturbation 

We consider the case that the unperturbed Hamiltonian is time-independent, and 
that there is a first order time-dependent perturbation, i.e. we choose: 

H = 11o + 2V(t) (9.6) 

with Ho time-independent. For ~Y we make the ansatz (which guarantees that Eq. 
(9.5b) is automatically satisfied): 

ku(2, t) = e r(~'t)7~o(t); Y = - Y* ~ £fc (9.7a) 

Y(2, t ) =  ~ 2kYk(t) (9.7b) 
k = l  

The expectation value of the Hamiltonian expanded in powers of 2 i s -  in 
analogy to Eq. (4.5): 

E(t) = (7/(2, t)]HI7~(2, t)) (9.8a) 

Eo(t ) = (kUo(t) IHoltP0(t)) (9.8b) 

El(t) = (~o(t)[V(t) + [Ho, Yl(t)] I kUo(t)) (9.8c) 

E2(t) = (To(t)I[V(t), rl(t)] + [Ho, Y2(t)] + ½[[Ho, rl(t)], Yl(t)]lT~o(t)) (9.8d) 

E3(t) = (~'o(t) I v(0, r:(t)] + [H0, Y3(t)] + ½[[V(t), r ,(0],  Y~(0] 
1 + ~[[Ho, Y~(t)], r2(t)] + l[[Ho, Y2(t)], Yl(t)] 

+ ~[[[H0, Yl(t)], Yl(t)], Y] (0117%(0) (9.8e) 



Stationary perturbation theory: I. Survey of basic concepts 289 

We determine To(t) and the Yk(t) from the expansion of the stationary condi- 
tions of Eqs. (9.2a) and (9.5a) in powers of 2: 

Co(t) = (To(t)][Ho, X] -- in aXat [To(t) )  + in  ( o(t)Ixl To(t)> = 0 (9.9a) 

a 
+ in ~ (To(t)[IX, Y1] I To(t)) = 0 (9.9b) 

c2( t ) - (T°( t ) [[  [n° 'X] - in  aX 1 ~t ' I12 +[[V,X],  Y,] 

at ' Y~ ) 

O 
+ i h ~  (To(t)l[X, Y2] +½[[X, Y~], Y~] ITo(t)) = 0  (9.9c) 

Do(t) =- Re(To(t)IHo - ih ~ I To(t))  = 0 (9.10a) 

0 Y~ 
D~(t) - Re(To(t)[[Ho, Y~] + V - ih ~ ]To(t)) = 0 (9.10b) 

1 D2(t) = Re(To(t)[[Ho, I12] + ~[[Ho, Y1], Y1] + [V, Y1] 

ar2_lin [ar  1 - -  ih ~ L at ' Y1 leo(t)> (9.10c) 

The elements of the Lie algebra ~e c are now time-dependent. We realize this by 
choosing time-independent generators and a time-dependent field of coefficients 
in the linear combinations of elements. 

The condition of Eq. (9.9a) determines the unperturbed wave function To(t ). 
So far we have not used that H0 is time-independent. We now not only make this 
special choice, but we even specify that To(t) describes a stationary state, i.e. that 
its time-dependence factors off. In this case Eq. (9.9a) simplifies to the time-inde- 
pendent condition of Eq. (5.4a) and from Eq. (9.10a) we conclude that To is of 
the form: 

To(t) = ~° exp I(~°lH°l~°)ih t I (9.11) 

with ~o time-independent. 
For stationary time-dependent perturbation theory based on a stationary 

time-independent unperturbed state we can replace To(t) in Eqs. (9.8, 9) and 
(9.10b,c) by ~o, since the operators in these expressions don't  contain any 
differentiations with respect to time. We then get: 

Co(t) = (~kol[H o, X(t)] I~o) = 0 (9.12a) 

G(t) = (0o[[[Ho, X], Y~] + [V, X] - ih 1_ c~t ' X 10o) = 0 (9.12b) 
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c2(t) = <q, ol[[/¢o, x], r21 - ih  / ~t , x  + I v ,  x], Y1I 

1 H, i~ {1[ ~'I ] I E ~tl ]} +~[[[ o, Xl, r,l, r,] + W x,  ~t j ,  r, + [x, rl], 10o)=0 

(9.12c) 

d Y1 
Dl(t) = (~bo] V -  i h ~ -  [~bo} = 0 (9.13a) 

i H~ OY2 _ ½ih L -~-'[aY' ] D2(t) = (~bol~[[ o, Y1], Y1] + [V, Y1]- ih--~- Y1 ]~o} = 0 (9.13b) 

If Eqs. (9.12) are satisfied, Eqs. (9.8) can be simplified to: 

E1 (t) = (~o ] V(t) [~bo } (9.14a) 

E2(t ) =½(00][V(t), Yl(t)l d-ih L ~ - ,  Y1 10o} (9.14b) 

E3(t) = (0ol½[[V, Y~], YI] + ~[[[Ho, gl], Y,], Y~] + ih L ~t ' Y2 IOo) (9.14c) 

If Eqs. (9.13) hold, alternative expressions for the Ek(t ) exist: 

0 Y~ 
E~(t) = ih(~ko[ ~ 10o} (9.15a) 

-~-'~Y2 21 [-OY~ ] E2(t) = ih(ffo] + L--~-, Y1, [~bo} (9.15b) 

~Y3 I[0Y2 1 1 f~Y1 ] IFF~YI ] ] E (t)=ih< ,ol-yi-+iL t ,Y1 +iLl-,Y2 iOo> 
(9.15c) 

The Eqs. (9.12-15) are the basis of stationary perturbation theory for a time- 
dependent perturbation. Note that in order to evaluate the Ek(t ) only Eqs. (9.12) 
and (9.14) are needed. Equations (9.13) or (9.15) become relevant if one wants 
to know the entire Yk(t) explicitly, and not only that part of the Yk(t) which is 
needed in Eq. (9.14) for the construction of the Ek(t). 

To appreciate this subtle detail, note that one can always decompose Y1 (t) in 
the following way: 

Yk(t) = YkD(t) q- YkN(t) 

~kN = Yk -- YkD 

(9.16a) 

(9.16b) 

(9.16c) 

The subscripts D and N stand for diagonal and nondiagonal [ 16]. Obviously only 
YkD contributes to Eqs. (9.13a) and (9.15a), while only Yku contributes to Eqs. 
(9.14b) or (9.14c). The same decomposition of Eq. (9.16) is also possible in the 
time-independent theory, but there YkD is a constant, which must be imaginary, 
since Yk has to be antihermitean. Hence the Yko only give rise to a physically 
irrelevant phase factor, which can be ignored. In time-dependent theory any YkD 
is a function of time and hence induces a time-dependent phase factor, and this 
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does have a physical meaning, though it usually has no effect on expectation 
values. It is now obvious that Eqs. (9.15) must not be regarded as energy 
expressions alternative to Eq. (9.14) but rather as conditions for the determina- 
tion of Y~D. 

One should therefore rewrite Eq. (9.15) as: 

a Y1 
ih(4'o[ ~ -  14'o) = <4'ol v(t)[4'o> (9.17a) 

ay2 FY, ] 
ih<4'ol ~ -  14'o> = E = ( t )  - ½(4'o1 / at ' Y~ [4'0> 

= ½(4'ol[V(t), Yl(0] 14'o> (9.17b) 

i h (4 ' o l~ -14 ' o )  =Ea( t ) -½<4 'o1L at ' r ,  +L at ' Y2 14'o) 

E k 7 7 ,  , 

= <4'ol-{[[v, rl], r~l + ~[[[F/o, Y~], r,], r,l +½ih [-?7,~aY1 r2] 

L ~ ' - ,  YI - ~ , h  , Y1 , Y1 [4'0) (6.17c) 

In order to determine Y1 (or more precisely YIN) we expand it in a basis X / o f  
L~°o and insert this into Eq. (9.12b) and write Xk for X: 

Yl = ~ bl(t)X1 ( 9 . 1 8 a )  
1 

(0o[[[Ho, Xz], Xk] 100 > b, ( t )  - ih ~ -  (4'01 [XI, Xk] 100> 

+ (4'0][V, Xk] [4'o) = 0 (9.18b) 

This is a linear system of coupled differential equations, that involves the 
Hessean Hkz of Eq. (4.13b) and the metric Akz of Eq. (6.16). If we introduce the 
operators / /~  which diagonalize H with the metric A, the system of Eq. (9.18) is 
decoupled. We expand: 

Y1 = ~ f t ( t ) l - l z  (9.19a) 
z 

insert this into Eq. (9.12a) with X = / / ~  to arrive at: 

H~f~  - ih ~ o k 1 Z  + 1~* = 0 (9.19b) 
l / 

with ~ , ,  A~, and ~ defined by Eqs. (6.21) and (6.22c) respectively, with the only 
difference that now V = H1 as well as V t are time-dependent. Making use of Eq. 
(6.21) we can rewrite Eq. (9.19b) as: 

ekfk -- ih Akk + V~ = 0 (9.19c) 

which is a set of uncoupled differential equations. 
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We make the transformation (reminiscent of the interaction representation): 

fk(t) = gk(t) exp ~ t (9.20a) 

- ~ = \ d t  +-~gk exp g t  (9.20b) 

such that Eq. (9.19b) becomes: 

dgk ,  ( e k ) ' ~  
i h ~ a k k e x p  ~ t  - - V * = 0  (9.20c) 

Now the g~ can be obtained by direct integration, somewhat like in Dirac's 
method of the 'variation of constants'. Again the antihermiticity of YI comes out 
automatically (for V hermitean). 

9.3. Perturbation theory of time evolution 

The solution of the time-dependent Schr6dinger equation is an initial-value 
problem. Given 7 ~ at a time t = to one wants to know the evolution of tp with 
time. This is determined by the time evolution operator exp Y. Assume again 
that the unperturbed problem is time-independent and that at t = to the system 
is in a stationary state 7~o of the unperturbed problem, then in view of Eqs. 
(9.11, 15a, 16): 

1 
ro =~ <~o[goIq~o>t (9.21a) 

1; 
Y1 -- ~ (~9o[ V(t) 1~o) dz + Y1N etc. (9.21b) 

0 

with Y1N determined as solution of Eq. (9.12b) or explicitly Eq. (9.18) to Eq. 
(9.21). 

9.4. Application to a time-independent perturbation 

For the special case of an exponentially switched static perturbation: 

V(t) = en tVo ;  r] > 0; Vk = (~/o[[Vo, if/k] ]~/0) (9.22) 

which vanishes in the limit t ~ -  o% we get from Eq. (9.20): 

gk(t)Akk = -~ V~ exp + t/ t '  d t '  
cx~ 

ek - ih~ exp + t/ t (9.23a) 

f g ( t )  Akk  = --V~c etlt(Sk - -  i h q )  - 1 (9.23b) 

If  we take the limit q ~ 0 we get the same result of Eq. (6.22) as in time-indepen- 
dent stationary perturbation theory for Y1. We also get trivially the same result 
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for E~(t) given by Eq. (9.14a) and for E2(t) as given by Eq. (9.14b) and for the 
expressions given by Eq. (9.17), since in the limit r / ~ 0 ,  OY~/~t =0.  The limit 
~/-+ 0 does apparently not cause any problems, unlike in traditional time-depen- 
dent theory [29, 34, 35], where the limit of the wave function for t / ~ 0  does not 
exist. 

The singularity of the traditional theory can be traced back even in the 
present formalism. It namely arises in the 'diagonal part' YID of Y~, as defined 
by Eq. (9.16b). If  we want to construct Y1D from Eq. (9.17a) for the present 
example: 

O Y1 ~ Y1 D 
ih<0o177- 10o> -- ih-77- -- e"'<0ol VolOo) (9.24) 

and integrate from - ~  to t we get: 

r , .  = e"'(Tsol VolVo) (9.25) 

This obviously diverges in the limit ~/~ 0. However if we divide the integration 
domain into two parts, one from - m  to 0, the other from 0 to t, we get: 

/~  1 1 2 Y,D= (q.olVol ob +Th (t + ,Tt (9.26) 

The first term in Eq. (9.26), which diverges, is time-independent, it represents an 
indefinite time-independent phase, while the second term in Eq. (9.26) leads in 
the limit q --* 0 to the first order correction of the time-dependent phase factor 
from (1/ih)Eot to (1/ih)(Eo+El)t. That the need to correct this phase in a 
time-dependent theory of time-independent perturbations leads to difficulties, has 
been observed previously [29, 34, 35]. It is also clear that in the present theory, 
where one only considers expectation values, an indefinite time-independent 
phase cannot do any harm. 

9.5. A perturbation periodic in time 

Of special interest is the case of a perturbation periodic in time: 

V(t) = cos(~ot) Vo (9.27) 

We introduce a switching function exp(qt) as in Eq. (9.22) and we define 
(assuming Vo to be hermitean): 

vk = (~bo[[Vo, H~]~o) = -(~kol[Vo,//~] [~o)* (9.28) 

From Eq. (9.20) we then get: 

1 t " 

g~(t)A~k=~V*f_ exp{(h+~)t'}cos(~ot')dt" (9.29) 

After integration the limit q ~ 0  can be taken except at the poles where 
h~ = + ~ .  Applying Eq. (9.20a) we then get: 

fg(t)A•k , • ~'exp(/cot) exp(--Rot) 
= --~Vk (ek + h~o + ek -- h~o J (9.30) 
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Inserting this into Eq. (9.19a) and then into Eq. (9.14b) we obtain: 

= ~" 2 exp(Zicot) exp( - 2icot)~ 
E2 = - ~  IVkl2Akkek [-2 h2co2 + + (9.31) k ek - ( ~  + hco) 2 (~k - h~) 2 J 

We also give the result for the pseudo-energy, discussed in more detail in Sect. 
9.6, namely for that defined by Eq. (9.49b): 

2= f 2ek exp(2icot) exp(-2icot)) 

(9.32) 

The singularities of Eqs. (9.30-32) for ho) = _+ek indicate that the ex must, in 
fact, be interpreted as model excitation energies, and that the metric which led to 
their definition (see Sect. 6) does make sense. 

The present approach to a regularized time-dependent perturbed theory 
appears easier and more transparent than others from the literature [29, 24, 35]. 

Now we show that in stationary perturbation theory the 'dipole length' and the 
'dipole-velocity' formula are equivalent, provided that: 

V o = e £ .  ? (9.33) 

is exactly expandable in the Lie algebra 5~, with respect to which stationarity is 
achieved, or rather that Vo4o is expandable in the function basis Xk4o, and 
hence in/7k4 o or /7~4 o. 

We expand: 

Vo = Z akFI• (9.34) 
k 

and get, using Eq. (6.15)' 

v~ = <4oltVo, n~114o> = Z a,~4olnY, n~j 14o> 
1 

= 2 ~<4o l [nY,  [H0, nkJ] 14o> = L <4ol[No, [//o, r/k]] 14o> 
l ~k 8k 

1 
= - (4ol[rt~, [/40, roll [4o) 

8k 
(9.35) 

we now use: 

[Ho, Vo] = e~" [Ho, f] = eh~2 ~" V (9.36) 
m 

and get 

eh 2 
vk = - - -  (0o1[O ~" V,/7~] ]0o) (9.37) 

ekm 

which is the dipole-velocity formula. 
This result is a special case of an off-diagonal Hellmann-Feynman theorem. 

It has been known that it holds within traditional RPA (with exchange) that is 
equivalent to linearized time-dependent Hartree-Fock, which is a special case of 
stationary time-dependent perturbation theory [36, 37]. 
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9.6. The time-dependent pseudo-energy 

In this section we make the same starting assumptions as in Sect. 9.2, hence the 
results will be essentially the same, we just use a different definition for the 
energy. Like in Sect. 9.1 we start with an analogy to time-independent Hamilto- 
nians. For these stationary states satisfy the condition: 

/h ~3t = E ~  (9.38a) 

with E time-independent. These states are of the form of Eq. (9.11), with ~0 
making E0 stationary. One may try to generalize the condition of Eq. (9.38a) for 
time-dependent Hamiltonians to: 

ih - ~  = W(t)7 t (9.38b) 

(with W real), which has the solution: 

I/ f } 7 j = exp W(t') dt" 0 (9.39) 
0 

with ~b time-independent. Let us now regard Eq. (9.39) as an ansatz for 7 j and 
insert this into the time-dependent Schr6dinger equation (9.1a). This leads to the 
following equation for ff [30-33]: 

H - W(t) - ih ~ 0 = 0 (9.40) 

Generally the solution ff of Eq. (9.40) will not be time-independent, i.e. the 7/ 
given by Eq. (9.39) will not be solution of Eq. (9.38b). However wave functions 
of the form of Eq. (9.39) with 7 j time-dependent do satisfy the time-dependent 
Schr6dinger equation (9. la) provided that ~ satisfies Eq. (9.40). In fact, one may 
choose W(t) rather arbitrarily and always find (at least one) corresponding 
and ~. Even W(t) =-0 will do. There is hence so far nothing unique in this 
procedure. However, we shall later use the freedom left in the definitions of W(t) 
to make an optimum choice, in the sense of a criterion to be specified. Of course 
we are interested in states that become stationary in the limit 2 ~ 0 and we want 
to describe them in terms of an energy W(t) and a wave function if(t) that are 
'as little time-dependent as possible'. 

Note that for the case that we consider, which has already been studied in 
Sect. 9.2, a particular choice of W(t) and ~O(t) does not affect the physics, only 
possibly the interpretation. We call W(t) the pseudoenergy and if(t) the pseudo- 
eigenfunction. In terms of ~ and W Frenkel's principle of Eq. (9.1b) will be 
replaced by: 

(6~ IH - W(t) - ih ~ [~) = 0 (9.41) 

The 'generalized Ehrenfest theorem' of Eq. (9.2a) keeps the same form just with 
7 ~ replaced by ~. The same holds for Eq. (9.5b) while Eq. (9.5a) has to be 
replaced by: 

ih a 0 w(t)=<q, lgl,/,>-5[(O O)l (9.42) 



296 W. Kutzelnigg 

We choose again a Hamiltonian in the form of Eq (9.6) and instead of Eq. (6.7a) 
we have: 

7t = exp[Yo(t)]~; ~ = exp[IT(t)]~o 

S Yo(t)=ihW(t); Yo ~ 2kYok, Y= ~ 2kYk (9.43) 
St k:0 ~=0 

Since Yo(t) is a scalar and commutes with Y(t) we can also write Eqs. (9.43) as 
(9.7a) with: 

Y = Yo + Y - (ih) -lEst (9.44) 

In Eqs. (9.8) and (9.9) we only need to replace ~o by fro and Y~ by Yk which 
means that Eq. (9.9) becomes Eq. (9.12) -wi th  Yk replaced by Irk, while in 
the counterpart of Eqs. (9.10) or (9.13) now the W k appear: 

S 
Wo(t) = (~o[Ho- ih~t [~o) (9.45a) 

Wl(t) = (~o[ V -  ih--~-[~o) (9.45b) 

= 1 H Y, - ih f S f l  Y1] ]0o) (9.45c) w~(t) <~,ol[V, ~1 +~[[ o, f,], -~]-~h sf2 st LOT' 
W3(t ) = (I//o][V , x~2] .-l- ½[[V, fl]~, YI] -II- 2]-[[He, YI], f2]  

-l- ~[[I ~0,  f21, f l ]  "[- I [ [ [Ho, f l ] ,  Yll, YII -- i h  - -  sf3 
St 

ihp~l - ] ;hp~2 ~,] 
2 L st ' Y~j- ]L -~ - '  

_ e rrr  ,6 LLL ' ,  1],0o> 4,d  

We also get Eqs. (9.14) for the Ek with Yk replaced by Yk, while instead of Eq. 
(9.15) we have: 

S f  1 W~ (t) = E, (t) - ih(~o] -~-  I~o) (9.46a) 

W2(t) =Ez(t) - i h ( ~ o [ - ~ - + ~ |  Y, [~9o) (9.46b) 

ef~ |F~f= ] ~Fsf' ] ~ s t  ' +~L07' w3(t) =S3(O- ih<¢,ol-~- + ~ i rl f~ 

I[-[-SY1 Y1] YlJ (9.46c) + LLvr' ' I¢,o> 

Combining Eq. (9.45) with Eqs. (9.46) and (9.12) (with Yk replaced by Yk) we 
get: 

W1 = (0o1V]IPo) - ih(Oo[-~- 1~9o) (9.47a) 
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1 V OY2 W2 = 5(0o1[ , Y~] [O0) - ih(Oo[--g- lOo) (9.47b) 

= Ool [tv, fl], Y1] ~-~[[[Ho, fl], fl], f,][~/O> 
OY3 1 O ~ -  1 F f O f ,  l ] _ _  - i l i ( ~ P o l - f f [ - + ~ t Y 2 ,  Y1]+-~l l - -~- , f r l  ,Yl  I~o~ (9.47c) 

At this point we remember that there was some freedom left in the definition of 
W(t). In view of Eq. (9.43) W(t) is specified (except for an arbitrary constant) if 
Y o(t) is specified; and since Y is determined, the decomposition of  Y into Yo and 
Y specifies W(t). Obviously Yo is a diagonal operator, the nondiagonal part of Y 
is hence equal to the nondiagonal part of Y. 

YN ~" YN (9.48) 

There is hence only a freedom in the choice of  YD. The first possibility is to 
choose: 

~t t YD = Yo = ih W(t') dt" 
0 

YD = 0; 

For this choice we get: 

w , ( t )  : Ool W[Oo) 
W2(t) =l(l~oliV, Yll]~t0) 

= 1 V W3(t) (~olE[[ , Y1], Y1] -~l[[[Ho, f,],  fl], fl]]~/o) 

' i+o> 

(9.48a) 

(9.49a) 

(9.49b) 

(9.49c) 

This is an ad-hoc choice with no clear physical meaning. Nevertheless we have 
achieved that the expressions for W~ and W 2 are simpler than those for El and 
E 2 ,  while W 3 is rather more complicated than E 3 . 

A second possible choice is to fix the Y~D SO that W(t) = E(t). This means 
that we satisfy: 

~ 7  1 Fc317 ~ ]  

1 
1 

to all powers of 2. Then one need not worry at all about W(t) and consider E(t) 
as the relevant energy. 

Other choices of W(t) based on more physical arguments will be made in the 
following section. 

9. 7. The time-dependent Hellmann - Feynman theorem 

It is easy to see that for a wave function T which is a solution of the 
time-dependent Schr6dinger equation (9.1a) the following relation holds 
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(for an arbitrary parameter ¢t): 

0 OH ~ / ~  0kU\_ /Oku  c~tP\~ (9.51a) 
a~K~'lgl~'>=<~l-~ l~e>+ih ~\aulat / Nat la~/3 

One may refer to this as a time-dependent Hellmann-Feynman theorem [38]. 
However, it has little to do with the Hellmann-Feynman theorem for a q~ which 
is a solution of the time-independent Schr6dinger equation: 

a Ee# = ~?o# (gt [H I kg) = (7~ I ~ I 7J ) (9.51b) 

In fact the second term on the right-hand side of Eq. (9.51a) can be much larger 
than the first one, as it is, e.g., possible for H time-independent, but 7 j a 
non-stationary state. In order to have something analogous to Eq. (9.51b) we 
should refer to a wave function O that is as close as possible to the eigenfunction 
of a stationary state. In fact, consider the pseudoeigenfunction ¢ which is a 
solution of Eq. (9.40) with an appropriately chosen W(t). Then in view of Eqs. 
(9.42) and (9.40) for c3¢ tc~2 orthogonal to ~u: 

a--U- <01~ I0> = HIO>+<OIH 
ih a ih 
2 a k t { ( I P l - ~ t ) - ( ~ O t  0 ) } = 2 - ~ { ( ~  I p ) - ( ¢  ~ ) }  (9.51C) 

In order to achieve that the Hellmann-Feynman theorem holds in the same 
form (Eq. (9.51b)) as in the time-independent case (just with E replaced by W(t) 
we must choose W so that the r.h.s, of Eq. (9.51c) vanishes. It is somewhat 
tedious but elementary to show that the same condition of Eq. (9.51c) also 
guarantees the Hellmann-Feynman theorem if O is not solution of Eq. (9.40) 
but obtained from the stationary condition of Eq. (9.41);. Of course, we must 
then express the 2, #, and t dependence of ¢ in terms of Y. If we assume again 
that H = H0 + 2 V with Ho time-independent and ¢o the time-independent wave 
function which makes <001HI00> stationary, then vanishing of the r.h.s, of Eq. 
(9.51c) means: 

017 11-~17 ] 1 FVc317, I7 ] 1 7 ] + . . .  [ 0 o ) = 0  (9.52) L<O°l +gk  '17 +6LLeu dt 

Let us first consider the simplest case, namely that /~ is identical with the 
perturbation parameter 2, and that we want to satisfy Eq. (9.52) at 2 = 0. We 
then have: 

0= ~ @o[~ [~o> =& @o11711¢o>; w (t) = <OolVlOo> =El(t) 
2 = 0  

(9.53) 

i.e. at 2 = 0 the Hellmann-Feynman theorem holds even for W replaced by E. 
Let us now identify again 2 with # but require that Eq. (9.52) holds at an 
arbitrary value of 2. This means: 

d 
= + 5[Y1, Y2]} + ' "  "1¢o) (9.54a) o ~t<g, olY1+2~Y2+~2{3y3+[Y2, Y,] 1 
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Equating all powers of 2 to 0 results in addition to Eq. (9.53) in: 

O= ~ (~bolY2[~o); w2 =½(~ol[V, Y~]l~9o) (9.54b) 
3t 

, 0=~ 

----- ~ V W3(t) <0012[[ , Yt], YI] ÷~[[[Ho, f l ] ,  Y1], fl][~/o> 

1 ~3 ~ ~ 1 [-I-c317, f ~ l '  f~ (9.54c) 

The results agree with Eq. (9.49) for W1 and W2, while there is a slight difference 
for W3. 

Let us finally regard 2 and # as independent. This means that we have to 
apply double perturbation theory for the Hamiltonian: 

H = Ho + 2V + #f2 (9.55) 

Using the expansion: 

Y(t) = ~ 2k#@k,(t) (9.56) 
k,l  

like in Sect. 5 - and a similar expansion for W(t) - we get from Eq. (9.52): 

(~Pol Yo~lkko) = 0 (9.57a) 
dt 

<1]/01Yll + 2[YOl, YlO] Iff/o> ~- 0 (9.57b) 
c~t 

+ ~[Yo,, Ylo] 1 - -  --(~t <~/01Y21 1 -- Y2o] -~- 2[Yll,~ - + g[[Yo,, f~ol, Y,o] lOo> = 0 (9.57c) 

Wo~ = @oil2 [~'o} (9.58a) 

Wll = (~/o1[ ~c~, flO] [~/0) 

= {0o][V, Yol] I~o) - - i h ~  (O01[Y,o, Yol] 1~o) (9.5Sb) 

'( W21 =2  ~/o][[ V, Y,o], Poll ÷[V,  Yll] ~-- [[V, roll, Ylo] '~- [[~"~, Ylo], f,o]lOo) 
f,o],  ,o1, 2o,1 + [[[Ho, f,o], f011, Ylo] 

+ [[[Ho, fo,], Lo], f,o] 1 0 o > - 7  <0ol LL et ' fo, , Ylo I~//o) (9.58c) 

Obviously the Hel lmann-Feynman theorem is not symmetric in ~ and p. In 
fact, in deriving Eqs. (9.57, 58) we have required that Eq. (9.52) is satisfied for 
# = 0 but )~ arbitrary. If we had required ). = 0 and  # arbitrary we would have 
got Eq. (9.58b) with f2 exchanged with V and Y~o with Yo,. 

This observation gives a partial answer to the question whether there is a 
quantity which becomes stationary if Frenkel's principle of Eq. (9. lb) is satisfied. 
The pseudoenergy W(t) is, in fact, a candidate. If it were possible to satisfy Eq. 
(9.52) for all possible parametrizations of Y, the pseudoenergy W(t) would in 
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fact be stationary. However, since this is not possible, W(t) is not the desired 
quantity, and it does not seem possible to find a better one. 

We shall see in the next section that for Hamiltonians periodic in time 
a genuine stationarity principle can be formulated. It involves time-integra- 
tion over a full period. It is rather obvious that this time integral of Eq. (9.52) 
vanishes if Y is periodic in time with the same periodicity as the Hamiltonian 
(and this independently of p). 

9.8. Floquet states 

If a Hamiltonian H is periodic in time with period ~, then the time-dependent 
SchrSdinger equation has solutions of the form [39-46]: 

T = e x p { ~ t } ~  (9.59) 

with the 'quasi energy'/~ [40] time-independent, while ~k is periodic in time with 
the same periodicity as H. States like Eq. (9.59) are referred to as Floquet states 
[39], since their existence is closely related to Floquet's theorem [47] well known 
in the theory of differential equations [48]. Other proposed names are 'quasi- 
periodic' states [42] or 'steady' states [43]. Floquet states play a central role in 
the theory of the interaction of atoms or molecules with strong laser fields. If H 
is of the form of Eq. (9.6) it can be shown that in the limit 2 ~ 0  the Floquet 
states converge to the stationary states [43]. This implies that the perturbation 
theory used here and outlined in Sects. 9.2 and 9.5 leads automatically to 
Floquet states for periodic perturbation, although this name has not been referred 
to, and although we have not explicitly used wave functions of the form of Eq. 
(9.59). 

Let us limit our attention to Hamiltonians periodic in time. The wave 
function of Eq. (9.59) is, of course, a special case of Eq. (9.39), just with 
time-independent E = W(t). Sincedifferent choices of W(t) mean a different 
decomposition of YD into Yo and YD (see Eq. (9.43)), the Floquet for£n of Eq. 
(9.59) of the wave function corresponds to a particular definition of Yo that is 
determined by the condition 

We want to study this order by order in perturbation theory and start from the 
general expressions (9.47a). In order that Eq. (9.47a) is independent of time, the 
time dependencies of the two terms on the r.h.s, of Eq. (9.47a) must cancel. For 
perturbations periodic in time this means that the Fourier components for k ¢ 0 
should compensate each other. 

We introduce the Fourier basis: 

and require 

fk(t) = eik'°t; e) = 27r/~ (9.61) 

0f, 
((~ho[Vfklt~o)) = ih((~ho] ~ - f k l ~ o ) ) ;  k ~ 0 (9.62) 

where the double bracket notation, following Sambe [43], means a scalar product 
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in an extended Hilbert space which implies additional time averaging: 

1 t t°+~ = -  (0  }f2 }¢,) dt (9.63) 
( ( O l a l o  )) • Jto 

The freedom left in the definition of Y1D is used so that: 

1 <0oly, I =0;  /~1 = ((0olVl~ko)) (9.64) ((Oo Oo)) =~ 

From Eq. (9.47b) we take in the same way: 

1 V OY2 ~((0oJ[ , f ,  l A [ O o ) ) = i h ( ( O o l - - ~ i - A l O o ) ) ;  k # O  (9.65a) 

(<~/0[ ~ t  2 I1~0>> =0;  /~2~" ((I~o[[V, fl]ll~o>> (9.65b) 

and we similarly obtain from Eq. (9.47c): 

~ = (<Ool½[[v, fd, fll + ~[[[Ho, L], fd, Y , ] - ~ L L % - ,  
(9.65c) 

One can achieve that /~ is time-independent to any order in 2, by imposing 
conditions on I7D. Having guaranteed this, we can, of course, replace E by its 
time average, remembering that E is a special case of W(t), i.e. using Eq. (9.42): 

- = -  ( t ) [ H J O ) - - w  0 -- ~ dt 
"~ o 72 ,J t o 

= ((0 IHI~ )) - ((0 ]in ~ I~)) (9.66) 

The nice thing with the extended Hilbert space [431 is that in ~/(~t now becomes 
a bermitean operator. The same is true for the operators: 

kI  = H - in ~t  ; rio = Ho - in ~t  (9.67) 

and we are able to formulate the time average of the generalized Ehrenfest 
theorem of Eq. (9.2a): 

((0 [[H, X]I0 )) = 0 (9.68a) 

as the condition that the time-averaged expection value: 

/~ = ((~ [/~l~b )) for ((0 [~ )) = 1 (9.68b) 

is stationary with respect to norm-conserving variations. 
It is now straightforward to take over the entire formalism of time- 

independent stationary perturbation theory just replacing the ordinary brackets 
by double brackets. In particular we get: 

E1 = ((Ool VIOo)) (9.69a) 

1~2 = 1 <(IP0I[V, fl]  I~0>> (9.69b) 

/~3~--- ((I]Jo[l[[ V, fl], Y1] nt- 1[[[/t0, Yl], Y1], Y1]JlflO>> (9.69c) 
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There is also a generalized Hylleraas functional: 

F(YI) = ((~0[[V, 7,] + ~[[Ho, Y1], 71110o)) (9.70a) 

with the stationary condition: 

1 /~. ½[[/to, 711, X] I~'0 b = 0 (9.70b) ((g,o[[V,X] o,X], + 
that determines the first-order operator 71 (or rather its non-diagonal part). 

Although the theory of  this section is - for Hamiltonians periodic in time - 
equivalent to that outlined in Sects. 9.2 to 9.7, there is nevertheless a fundamen- 
tal conceptual difference. While in previous subsections of Sect. 9 time was a 
simple parameter, it is now an integration variable. This implies that the 
variational group refers to unitary transformations in the 4-dimensional space 
including time. A complete set of functions of  the time coordinate is given by the 
Fourier basis of Eq. (9.61) and a basis of the Lie algebra with respect to time 
transformations are the shift operators: 

Pkz = ]A )(,ftt l = ei(k-')~' (9.71a) 

The operators X in this section are of the form: 

X = x • P (9.71b) 

with x ~ 5~c time-independent and with P of  the forr~q of  Eq. (9.71a). Let us now 
study the stationarity condition of Eq. (9.70b) for Yz- Since ~o is time-indepen- 
dent, only those Pk~ give a non-vanishing condition for which either k = 0 or 
l = 0. We hence get from Eq. (9.70b): 

1 H ((~/o[[V, x] -q-l[[o0, x], Y1] ~-2[[ 0, X~l], x] 

-½hko[x, ~'~]--2 L ot , x  ft[0o)) = 0  (9.72a) 

Here x is time-independent. We expand V and Y~ into their Fourier components: 

V(t) = Z vkf~(t); Y1 = Z ykfk(t) (9.72b) 
k k 

and insert this into Eq. (9.72a) with the result: 

(~bo J[v,, x] + [[Ho, x], Yt] + hko[x, y,] lifo) = 0 (9.72c) 

We expand Yl in a basis xk: 

y, = • b~)xk (9.73a) 
k 

such that Eq. (6.46c) becomes (with x in Eq. (6.46) replaced by xi): 

- xA J ,o) = ( 01[[Ho, xi], xA + hz o[x,, xA I¢o) 
k 

= ~ (Hi k + hlcoA ,k)b(k ° (9.73b) 
k 

If, like in Eq. (9.19a), we expand in the Hk we get: 

--(~o[[V~, Hk] I~/'o) = [e~fk + hlco]Lk (9.73c) 

For the special case of Eq. (9.27) we reproduce Eq. (9.30), while E2 is the time 
average of  the E2 given by Eq. (9.31), i.e.: 

g2 = 1 2 [VkJ 2Akk8k(g2 - -  h 2 ( ' O 2 ) - '  (9.74) 
k 
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For the quasienergy a Hellmann-Feynman theorem holds in the same form as 
for time-independent states; 

aS 0 av g--~-= ~ 0  1-~-I~b ) ) =  (( I ~ -  10)) (9.75) 

and this holds for all 4. One might conclude that therefore: 

1 fto+~ 
- W(O dt (9.76) 

E 2  ~ ~ ,It 0 

with the W(t) derived in the last section that satisfies Eq. (9.51a). This is, in fact, 
true. However, as one sees from the time-average of Eq. (9.47) this holds for all 
possible W(t). A Hellmann-Feynman theorem in the time-average is a much 
weaker condition than this theorem for all t. 

9.9. Time-dependent properties, in particular polarizabilities 
and hyperpolarizabilities 

One of the most important applications of time-dependent perturbation theory in 
quantum chemistry is the calculation of frequency-dependent polarizabilities. We 
have now a look at them in the framework of stationary time-dependent 
perturbation theory. 

Let the operator f2 describe a property and #/= exp(f3~o be a time-depen- 
dent pseudoeigenfunction in the sense of Eq. (9.40) (with ~0 time-independent) 
corresponding to a Hamiltonian H = H0 + 4V(t), then: 

= 1 Q <01 10> f3++[I  , fl ,  f ]+)Oo> 
= < olO + 4[0,  ,o1 + 42{[o,  201 + f ol,  7 o1} + . - .  Iq, o> 

(9.77) 

where we have used the notation of the double perturbation expansion of Eq. 
(5.3), although so far we only consider the single perturbation parameter 4. If we 
have cared to satisfy the conditions of Eq. (9.55) that a time-dependent Hell- 
mann-Feynman theorem holds, we get alternatively: 

(01f2,O) = { ~  W(t)}~=o (9.78) 

i.e., as suggested by Rice and Handy [33], we can evaluate time-dependent 
properties as pseudoenergy derivatives. 

On the other hand for periodic perturbations (and we have these in mind) 
the Floquet-state formalism outlined in Sect. 9.8 is much simpler and more 
powerful than that in terms of pseudoenergies as explained in Sects. 9.6 and 
9.7, and it appears recommended to use this formalism. Of course, E is 
now time-independent, and time-dependent properties cannot be obtained as 
derivatives of E even if a Hellmann-Feynman theorem holds. Fortunately 
a discussion of the time-dependence can now be replaced by a discussion of the 
various Fourier components. 

In the pseudoeigenstate formalism the dipole moment (of a molecule in a 
time-dependent external field) is the expectation value of the (time-independent) 
dipole operator. We choose H in the form of Eq. (9.33a) with V the external 
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oscillating field and (2 as a static field and we get: 

9W 
((2)  = 0~ =Wm + 2 W l l  +22W21 + ' "  (9.79) 

with W01 the permanent dipole moment (component) and Wlz the respective 
component of  the frequency-dependent polarizability. 

I f  V has the frequency co, it contains the Fourier components k = + 1 and 
k = - 1 ,  then WI~ will have the same components + 1, while W21 will contain 
0, + 2 etc. To obtain all these components we can as well take the time-average 
of W, i.e. E and replace s2 by the operator of  a dipole field oscillating with the 
frequency k~o, i.e. we consider the Hamiltonian: 

H + 2V +/zkO e 'k'° 

and get then for the kth Fourier component of the induced dipole moment: 

0~ 

10. Quasidegenerate stationary perturbation theory 

The conventional perturbation theory breaks down when the state to be per- 
turbed is degenerate and if this degeneracy is removed by the perturbation. In the 
sum-over-states formulation zero energy denominators would appear. In our 
stationary perturbation theory the linear system from which the perturbing 
operator is evaluated, becomes singular and has no solution. In the case of 
near-degeneracy, the conventional perturbation theory is still applicable, but 
small energy denominators appear and convergence of  the perturbation series 
becomes unlikely. 

What we basically want to do in perturbation theory for operators in a 
matrix representation is (a) to find a transformation U(2) that transforms a 
Hamiltonian H(2) to a diagonal operator L(2): 

L(2) = U-'(2)R(2)U(,t) (10.1) 

and (b) to construct U(2) as well as L(2) as power series in 2. Step (b) fails in the 
degenerate or quasidegenerate case. What one can do, however, and this is the 
essential feature of quasidegenerate perturbation theory, is to renounce on full 
diagonalization in Eq. (10.1) and to be satisfied with block diagonalization. Say 
H has the dimension n, and we achieve that L consists of two diagonal blocks of 
dimension d and n - d respectively, with d sufficiently small and such that our 
desired eigenvalue E(2) is contained in the d x d block. Then it is trivial to get 
E(2) from L(2) after one has constructed L(2) and U(2) as expansions in powers 
of  2. The subspaces must be selected so that all unperturbed states with energies 
close to the one to be studied are in the small space of  dimension d, called the 
model space, such that in the perturbation expansion no small denominators 
arise. The diagonal block of L(2) in the model space is referred to as the effective 
Hamiltonian. 

We follow here the formalism preferred by the present author [ 16] that is 
equivalent to more traditional presentations of quasidegenerate perturbation 
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theory. One rewrites Eq. (10.1) as: 

UL = HU; L = Ho + AL; 

[Ho, U] = U A L -  )~VU; 

and expands to powers of 2: 

AL = ~ )~kLk (10.2a) 
k = l  

U = 1 + ~ 2kUk (10.2b) 
k = l  

[Ho, U1] = L ~ -  V (10.3a) 

[Ho, /_72] = L 2 + U I L  1 - V U  1 etc. (10.3b) 

The condition that W should be a 'nondiagonal' and L a 'diagonal' operator 
(where 'diagonal' here means 'block-diagonal', and 'nondiagonal' that the diago- 
nal blocks vanish) leads to: 

L1 = l iD;  [Ho, U1] : - - V N  (10 .4a)  

L 2 = ( V U I )  D - ( U 1 L 1 ) D  ; [H0, U21 = ( U 1 L 1 ) N  --  ( V U I ) N  (10 .4b)  

We now want to combine quasidegenerate perturbation theory with the concept 
of stationary perturbation theory. Rather than to solve the Schr6dinger equation 
(or to diagonalize a Hamiltonian in the sense of Eq. (10.1)) we want to satisfy 
a stationarity condition. In the non-degenerate case we care to make the 
expectation value ( 7 j I HI ku) stationary (for ~P normalized). The straightforward 
generalization is to make all matrix elements of the effective Hamiltonian L(,~) in 
the model space stationary, i.e. to require: 

6 (TJ~ ]H[Tt~ ) = 6 ((o~, I UtHU]49v ) = 0, for all ~b~ in the 'model space' 

v*u -- 1; ( ~ . [ g o l q L )  = ~ v E 0 .  (10.5) 

The transformation U only removes the coupling between model states and other 
states, not within the model space. While in traditional quasidegenerate pertur- 
bation theory U need not be unitary, the unitary choice is more consistent in the 
present context. With the exponential formulation W = exp a we get a set of 
Brillouin (hypervirial) relations: 

<e ,  liB, x]  [~v > = 0 (10.6) 

There are many more conditions than in the non-degenerate case, and one may 
wonder whether it is possible to satisfy all of them. In fact, let N be the 
dimension of the Lie algebra of the variational group and d the dimension of the 
model space, then there are N • d 2 conditions, but the number of parameters to 
express a and hence W in terms of the Xp is only N. So there are N • d 2 equations 
for only N unknowns. A solution is only possible if at least N .  (d 2 -  1) 
conditions of the type of Eq. (10.6) are satisfied trivially. 

We expand Eq. (10.6) first in terms of the Hausdorff expansion for 
U = exp Y and then in powers of the perturbation parameter 2 for Y = ~k 2kYk : 

<~b,l[H, X] +[[H, X], Y] + I[[[H, X], Y], Y] + " "  ]qSv> = 0  (10.7) 

<~bu I[Ho, X] ]~b~ ) = 0 (10.8a) 

(qSu I[V, X] + [[Ho, X], Y1] ]~u) = 0 (10.8b) 

exactly like in Sect. 4, just with general matrix elements in the model space rather 
than simple expectation values. 
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Take as an example the linear variational group with the basis operators: 

Xkt = [¢k )(q~ I (10.9a) 

such that the model functions qS, are included in the basis. Operators of the type 
X,v have to be excluded in order to satisfy Eq. (10.3). On the other hand, an Xkz 
in which neither k nor I refers to a function in the model space, gives trivially the 
value 0 for the Brillouin condition of Eq. (10.Sa). A non-redundant basis of 
antihermitean shift operators hence consists of: 

)~k = I ¢ ~ ) ( ¢ k [ - I ¢ k ) ( ¢ ~ 1 ,  ek not in the model space (10.9b) 

These are d .  (n - d) operators where n is the dimension of the basis {Ok }. One 
expands Y just in these and the number of non-trivial Brillouin conditions is the 
same. In fact: 

h~ = (¢u IYo[Oe ) (lO.lOb) 

Since k = v or k = # is excluded, Eq. (10.10) is trivially non-zero only if Q = / t  or 
~ = v "  

(¢~ [[H, J~,k] ] ¢~ } = -- hk~ -- hvk 6~,v ( 10.1 1 a) 

(¢~ [[H, )~k] [ ev ) = -- 6,~hk~ -- huh ( 10.1 lb) 

These conditions are satisfied if all h,x = 0 (k not in the model space), i.e. if the 
matrix representation of H0 in the basis {¢k} is block-diagonal. 

We expand Y1 in terms of the X,~: 

Y, = 2 c,k)~,~ (10.12) 
,u,k 

and get from Eq. (10.8b): 

<¢ l[v,L,3Oc >+Zcok<c.l[[Ho, L,l ,  Yo f¢v>=o (10.13) 
~,k 

This is a linear system of equations much like in the non-degenerate case. For the 
Hessean we get: 

( ¢ .  ] [[Ho, )?o,], I ¢.  ) = - fi . O ,h.o + 6o. ,L.h,k + ,L. @hk, -- 6°. fik, 
(10.14) 

If  we choose the @ such that they diagonalize the matrix h_, the matrix elements 
of Eq. (10.14) only contain energy differences e, - e k  betwe-en unperturbed states 
within and outside the model space. 

Unfortunately it does not appear possible to define a quasidegenerate 
Hart ree-Fock theory as the first step (for 2 = 0) of a quasidegenerate coupled 
Hartree-Fock theory. Let us consider a set of quasidegenerate single-determi- 
nant states q~, let us choose the variational group as usual in Hart ree-Fock 
theory and let us try to satisfy the Brillouin conditions: 

(¢u [[Ho, a~] [¢. ) -- 0 (10.15) 

but only for those p, q for which: 

( ¢ , 1 a ~ [ ¢ , ) - - 0  (10.16) 

Let c& be a spin-orbital occupied in both ¢ ,  and ¢~ and ~o~ spin-orbitals neither 
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occupied in qS, nor in q~, and let q~x be occupied in qSj,, but q~y occupied in ~bv. 
Then af, should be excluded, because it does not satisfy Eq. (10.16). We must 

a i Then, however, we have many more conditions hence restrict the aPq to a i or aa. 
to satisfy than coefficients available in the expansion of Y1. 

It is easy to see that stationarity of a single Har t r ee -Fock  state gives just as 
many Brillouin conditions as there are operators aT. So we cannot make various 
states stationary with one set of a~. If we want to do so we need excitation 
operators which discriminate between the model states on which they act. This can 
be achieved by including 'conditional' excitation operators like ai~ (also called 
operators with spectator lines). The notation is used that i, j refer to spin orbital 
occupied in all model states, a, b in no model state, x, y in some model states. The 
problem then arises that the Lie-algebraic property of the a a operators is lost, if 
one includes a}'~ etc. In particular we no longer have a variational group of 
one-particle transformations. Another way to phrase this is that quasidegenerate 
perturbation theory in terms of a set of stationary Slater determinants is not 
possible. 

One has to be less demanding and one may, e.g., require that the sum of the 
energies of the considered states is stationary (average-of-configuration SCF), 
or that a particular linear combination of Slater determinants is stationary 
(MC-SCF). 

There is, nevertheless, the possibility for stationary quasidegenerate perturba- 
tion theory of many-electron systems, namely if one chooses H0 as the bare- 
nuclear Hamiltonian without electron interaction. Then just as many Brillouin 
conditions of the type of Eq. (10.15) are trially satisfied and one has as many 
unknown parameters as non-trivial conditions. On these lines a stationary 
formulation of quasidegenerate many-body perturbation theories is possible (see 
paper II of this series). 

11. Concluding remarks 

Although a few results of this paper are probably either new or appear in a new 
context, the main interest of this study is on one side the unified and consistent 
formulation of stationary perturbation theory in terms of the variational group 
(or some of its subgroups) and on the other side the power of this formalism for 
applications to be described in forthcoming papers [4, 6], or already briefly 
pointed out [7]. Two methods known for the evaluation of molecular properties 
of molecules, called IGLO [5] and L O R G  [49] respectively, look at first glance 
very similar. However, only IGLO satisfies a Hylleraas-type stationary condition 
for the second-order energy [6, 7]. 

We have not worried here about mathematical problems of perturbation 
theory [1], e.g. the conditions for its convergence and the existence (square 
integrability) of the perturbed wave function [7]. Somehow the present formalism 
is simpler than the exact theory, because the original problem is reduced to one 
in a finite number of dimensions (though an originally linear problem may become 
nonlinear) and some difficulties are avoided in the chosen model, but they may 
play a role when it comes to comparing approximate with exact solutions. 

We have mostly been concerned with ground states, but the formalism is 
applicable to excited states as well, and even - as mentioned - to ensembles. 

It has sometimes been claimed that the unitary formulation of perturbation 
theory is more complicated than that in intermediate normalization and that 
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ted ious  m a n i p u l a t i o n s  are  r equ i red  in  the u n i t a r y  f o r m u l a t i o n  to ar r ive  a t  the 
f inal  results .  ( F o r  a c o m p a r i s o n  o f  the two possibi l i t ies  in  F o c k  space p e r t u r b a -  
t ion  theory  see e.g. Ref.  [16].) In  the p resen t  con tex t  this is ce r ta in ly  n o t  the case. 
O f  course ,  l eng thy  express ions  arise i f  one  goes to h igh  orders ,  b u t  h igh -o rde r  
p e r t u r b a t i o n  theory  is t ed ious  a n y h o w  a n d  is n o t  o u r  p re sen t  concern .  
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Appendix A 

On the Lie algebra of the variational group and its subalgebra 

Let 5e be a Lie algebra the elements of which are operators  that  act in a Hi lber t  
space or a Fock  space. This algebra is called real, if a basis {Xk } of ~ can be 
chosen such that  all elements of 5( ~ are expressible as l inear combina t ions  of the 
Xk with real coefficients, otherwise as complex. So 'real '  or 'complex '  refers to the 
field of numbers  u p o n  which the algebra is constructed,  no t  to the elements 
(operators)  themselves. We call an  operator  X real if  it t ransforms a real wave 
funct ion ~9 to a real one and  an  imaginary  ~O to an  imaginary  one. Conversely an 
imaginary operator  t ransforms a real ~b to an imaginary  wave funct ion and  vice 
versa. 

In  a Lie algebra of operators,  the subset of an t ihermi tean  operators forms a 
real subalgebra. In  fact the commuta to r  of two ant ihermi tean  operators  is 
ant ihermitean.  On the other hand,  a Lie algebra that  consists of hermitean and  
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antihermitean operators (and linear combinations of these) is necessarily com- 
plex, because i times a hermitean operator is antihermitean and vice versa. 

Starting from a complex Lie algebra 5a~ of operators, we can always 
construct the real subalgebra Ga of antihermitean operators. 

One can go one step further and consider within 5P, only real operators. 
Since the commutator of two real operators is again real, the subset ~ o  c ~ ,  of 
real operators is again a Lie algebra. The complementary set of imaginary 
operators c G ~ ~o is not a Lie algebra, since the commutator of two imaginary 
operators is real. 

If  both 5Q and Yr are associated with a unitary group f¢ (are 'generating' 
fq), the Lie algebra 5e o generates the real orthogonal group (9 = fq. 

Appendix  B 

The Newton-Raphson procedure for linear variations 

We want to solve the iterative linear system of Eq. (2.14a) for the basis of 
operators of Eq. (3.8). It is recommended to use Eq. (6.1) of the Hessean, rather 
than Eq. (2.llb).  We hence want to solve: 

D(;) + y~ u ( , )~ ( -  + 1) = 0 (B.1)  - -pq  vq 
q 

Df "~ = (&(n)[[H, Xp]lq~(") ) (B.2a) 

H ~  ) = (qs(n)[[Xpt, [H, Xq]] I~0(n) ) (B.2b) 

~(.) = e~(-)~ : ~(o) = ~ (B .3a)  

a(") = E c(p")Xp; n ~> 1 (B.3b) 
p 

by iteration. The operator basis consists now of the shift operators 
Xkt = ]qSk )(qStl given by Eq. (3.7). Since each Xk+ has two labels, each label p, q 
in Eqs. (B.1-3) has to be replaced by a pair of labels kl or mn. It is 
recommended to choose the function basis {~bk } of YfN such that + is a member, 
say (P = q5 o, of this basis and that the basis is orthonormal. Then we have in the 
first iteration cycle: 

D(0) = Dkt (q~][H, Xkt]]q~) hok6to-- 6okhto (B.4a) 

H(~°?m~ = H~,,m, = ( ~  I[X,k, [H, Xm°]] [ ~ )  = 6toh~m~°o 

--  6106kmhno - -  ho,,,6.ibko + ¢~ornhnlbkO (B.4b) 
hpq = ( 4 p  [ H I 4  q ) (B.5)  

The only non-vanishing elements are: 

D o t = - h t o ;  l ~ 0 ;  Dko=hok; k ~ O  (B.6a) 

HkO,mO = (hkm - -  Okmhoo)(  1 - -  ~kO) 

Hot, o n = (hnl - -  ~nlhoo)(  1 --  ~lO) (B .6b )  

A non-redundant operator basis hence consists of the operators Xko and Xok 
(k ~ 0) and we can expand a as: 

(r = ~ CkoXkO+ Z CokXok (B.7) 
k( vaO) k( ~O) 
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the coefficients Cko and Cok are obtained f rom the linear systems of  equations: 

D*o + E nko,'oC'o = 0 (B .Sa)  
l(~o) 

D*k + ~ Hok, olCo, = 0 (B.8b) 
t(~o) 

Explicitly the system of  Eqs. (B.8) reads: 

hko + ~ hktCto -- hooCko = 0 (B.9a) 
i f#o) 

--hok + ~ hlkC01 -- hooCok = 0 (B.9b) 
l(~o) 

It  is sufficient to solve Eq. (B.9a), because: 

%1 = - c *  (B.10) 

The Cot (l ~ 0) are obtained f rom a linear system of  equations o f  dimension 
N -  1. We choose Coo = 0 to simplify the summations.  We must  next construct:  

q~(") = e~")qSo (B.11) 

We note that  

a2~bo = - t 2 ¢ o ;  t2 = Y 2 (B.12) 
k 

e ~b o = cosh a • ~b o + sinh a • ~b o = cos t • ~b o + - -  
sin t 

aqSo 
t 

sin t 
= cos t" ¢o + - 7 -  ~ ckO•k (B.13) 

This gives us the ~b of  the next iteration as a linear combina t ion  o f  the basis 
functions. We can then orthogonalize the basis to the new q~ and proceed as 
before. 

The t ransformat ion  to a new basis is a ra ther- t ime-consuming step and 
therefore not  recommended in practice. For tunate ly  this c a n -  in this special 
case - be completely avoided by a closed summat ion  of  the infinite Hausdor f f  
expansion of  the Brillouin condition. This is related to an 'even-odd-rule '  
[16, 50, 51] according to which even powers of  a are diagonal  operators  (see Eq. 
(9.16)) and odd powers o f  a non-diagonal  operators.  This manifests itself in Eq. 
(B.13). One can in fact rewrite the Brillouin condit ion as (for  • - ~b0): 

0 = (~1 e-~[ H, X] e q ~ )  = cos 2 t~(~l[H, X I [ ~ )  
t 

I f  we define: 

tant <@l[[H,X],~]14,> tan2t <@la[H, Xlalq,> } (B.14) 
+ t - t ~ - Y -  

Q = tanh a = E dkoXko + E dokXok 
k k 

dko = --d~k = ( tan  t/t) . Cko 

the Brillouin condi t ion o f  Eq. (B.14) can be written as: 

o = (~  I[H, X] 147 + (~  I[[H, x], a] l~)  - (~  [etH, X]e I~)  

(B.15a) 

(B.15b) 

(B.16) 
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This expansion in Q is finite, while that in powers of a is infinite. Either 
expansion is nonlinear and needs to be solved by iteration. But this is much 
simpler for Eq. (B.16). 

If we insert the expansion of Eq. (B.15a) into Eq. (B.16) and use Eq. (B.6) 
as well as: 

<q~ ]XOk [H, X,,,,]Xm l q~ > = hk,,6,, -- 5k,,,hm (B. 17) 

( ~  IQ[H, Xok]Q 1~ ) = dko Z do, h,o (S.lSa) 
n 

( ~  I~[H, Xkolff ]q ~) = --dok Z d, ohoz (B.lSb) 
1 

Eq. (B.16) becomes: 

0 

If we ignore the terms bilinear in the dko or d0k, Eq. (B.19a) becomes identical 
with Eq. (B.9), i.e. in the first iteration cycle the cko agree with the d~o and hence 
Q agrees with a. Of course, the counterpart of Eq. (B.10) holds: 

dot = - d *  (B.20) 

The iterative solution of Eq. (B.19) is straightforward via: 

( d(')h "~ hk°+Zhkfl~g+')--I . h ° ° + ~  o m  m0) d~ +1)=0 (B.21) 

This is obviously an iterative approach to the eigenvalue problem: 

hko + ~, hkt~o = Edko (B.22) 
l 

with the eigenvector in intermediate normalization. This is easily seen if we 
consider the expectation value: 

E = (¢, le-~He~l~)  =cos2 t (~ l (1- -~)H( l  + q)]~) (B.23) 

and note that: 

cos 2 t = [1 -- ( ~  ]021~)]--1 (B.24) 

Eq. (B.22) is hence the eigenvalue system that makes E stationary. 
If E as given by Eq. (B.23) is stationary with respect to variation of Q, an 

alternative energy expression is: 

g=(a'lalq'>+½<~l[n, dl~>=hoo+Yaomhmo (B.25) 
m 

which establishes the relation between the non-linear system of Eq. (B.20a) and 
the eigenvalue system of Eq. (B.22). 

There are usually better ways to solve the eigenvalue system of Eq. (B.22) 
than that via the iteration scheme indicated by Eq. (B.21), but Eq. (B.21) is 
interesting as it follows directly from the stationarity condition of the expectation 
value as alternative, but equivalent to the eigenvalue system. 


